Efficiency Limit of Molecular Solar Thermal Energy Collecting Devices

被引:104
作者
Borjesson, Karl [1 ]
Lennartson, Anders [1 ]
Moth-Poulsen, Kasper [1 ]
机构
[1] Chalmers, S-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Molecular solar thermal; Energy efficiency; Energy storage; Solar thermal; Solar energy; Energy conversion; Maximum solar energy-conversion efficiency; TRIFLUOROMETHYL-SUBSTITUTED NORBORNADIENE; DONOR-ACCEPTOR NORBORNADIENE; PHOTOCHEMICAL UP-CONVERSION; DETAILED BALANCE LIMIT; PHOTORESPONSIVE POLYMERS; STORAGE; SYSTEM; MOIETIES; CELLS; (FULVALENE)TETRACARBONYLDIRUTHENIUM;
D O I
10.1021/sc300107z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a larger fraction of energy is based on solar energy an other renewable energy sources, technologies for energy storage and conversion is becoming, increasingly important Molecular solar thermal (MOST) is a concept for long-term storage of solar energy in molecules and release of the energy as heat with full regeneration of the initial materials The process is inherently closed cycle and emission free. No assessment of the fundamental efficiency limits of the technology has been made. In this report, I efficiency limits and fundamental factors for molecular design of molecular solar thermal systems are discussed. Maximum efficiencies and potential temperature gradients are estimated using a number of basic assumptions on desired storage lifetimes and energy losses. The predicted maximum solar energy conversion efficiency is 10.6% at a S-1-S-0 gap of 1.89 eV. At this S-1-S-0 gap, the stored energy is able to create temperature differences of similar to 300 degrees C. Several existing systems have an energy storage density in line with the predicted maximum one but do so at larger than optimal S-1-S-0 gaps.
引用
收藏
页码:585 / 590
页数:6
相关论文
共 46 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Concentrated solar thermoelectric generators [J].
Baranowski, Lauryn L. ;
Snyder, G. Jeffrey ;
Toberer, Eric S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :9055-9067
[3]  
Bastianelli C., 1991, J CHEM SOC PERK T, V2, P679
[4]   Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement [J].
Blankenship, Robert E. ;
Tiede, David M. ;
Barber, James ;
Brudvig, Gary W. ;
Fleming, Graham ;
Ghirardi, Maria ;
Gunner, M. R. ;
Junge, Wolfgang ;
Kramer, David M. ;
Melis, Anastasios ;
Moore, Thomas A. ;
Moser, Christopher C. ;
Nocera, Daniel G. ;
Nozik, Arthur J. ;
Ort, Donald R. ;
Parson, William W. ;
Prince, Roger C. ;
Sayre, Richard T. .
SCIENCE, 2011, 332 (6031) :805-809
[5]   Photochemistry of (fulvalene)tetracarbonyldiruthenium and its derivatives: Efficient light energy storage devices [J].
Boese, R ;
Cammack, JK ;
Matzger, AJ ;
Pflug, K ;
Tolman, WB ;
Vollhardt, KPC ;
Weidman, TW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (29) :6757-6773
[6]  
BREN VA, 1991, USP KHIM+, V60, P913
[7]   Detailed balance limit for the series constrained two terminal tandem solar cell [J].
Brown, AS ;
Green, MA .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2) :96-100
[8]   Progress in electrical energy storage system: A critical review [J].
Chen, Haisheng ;
Cong, Thang Ngoc ;
Yang, Wei ;
Tan, Chunqing ;
Li, Yongliang ;
Ding, Yulong .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2009, 19 (03) :291-312
[9]   Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion [J].
Cheng, Yuen Yap ;
Fueckel, Burkhard ;
MacQueen, Rowan W. ;
Khoury, Tony ;
Clady, Raphael G. C. R. ;
Schulze, Tim F. ;
Ekins-Daukes, N. J. ;
Crossley, Maxwell J. ;
Stannowski, Bernd ;
Lips, Klaus ;
Schmidt, Timothy W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6953-6959
[10]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502