Sampled-data control of 2D Kuramoto-Sivashinsky equation under the averaged measurements

被引:0
作者
Kang, Wen [1 ]
Fridman, Emilia [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing, Peoples R China
[2] Tel Aviv Univ, Sch Elect Engn, Tel Aviv, Israel
来源
2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC) | 2019年
基金
中国国家自然科学基金; 中国博士后科学基金; 以色列科学基金会;
关键词
NONLINEAR DISSIPATIVE SYSTEMS; FINITE DETERMINING PARAMETERS; FEEDBACK-CONTROL; STABILIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with sampled-data control of 2D Kuramoto-Sivashinsky equation over a rectangular domain Omega. We suggest to divide the 2D rectangular Omega into N sub-domains, where sensors provide spatially averaged state measurements to be transmitted through communication network. We design a regionally stabilizing controller applied through distributed in space characteristic functions. Sufficient conditions ensuring regional stability of the closed-loop system are established in terms of linear matrix inequalities (LMIs). By solving these LMIs, an estimate on the set of initial conditions starting from which the state trajectories of the system are exponentially converging to zero. A numerical example demonstrates the efficiency of the results.
引用
收藏
页码:268 / 273
页数:6
相关论文
共 24 条
[1]   Wave suppression by nonlinear finite-dimensional control [J].
Armaou, A ;
Christofides, PD .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (14) :2627-2640
[2]   Feedback control of the Kuramoto-Sivashinsky equation [J].
Armaou, A ;
Christofides, PD .
PHYSICA D, 2000, 137 (1-2) :49-61
[3]   FEEDBACK CONTROL OF NONLINEAR DISSIPATIVE SYSTEMS BY FINITE DETERMINING PARAMETERS - A REACTION-DIFFUSION PARADIGM [J].
Azouani, Abderrahim ;
Titi, Edriss S. .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (04) :579-594
[4]   Network-based H∞ filtering of parabolic systems [J].
Bar Am, Netzer ;
Fridman, Emilia .
AUTOMATICA, 2014, 50 (12) :3139-3146
[5]   Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control [J].
Christofides, PD ;
Armaou, A .
SYSTEMS & CONTROL LETTERS, 2000, 39 (04) :283-294
[6]   Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation [J].
Coron, Jean-Michel ;
Lu, Qi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3683-3729
[7]   Cylindrical solitary pulses in a two-dimensional stabilized Kuramoto-Sivashinsky system [J].
Feng, BF ;
Malomed, BA ;
Kawahara, T .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 175 (3-4) :127-138
[8]   SAMPLED-DATA DISTRIBUTED H∞ CONTROL OF TRANSPORT REACTION SYSTEMS [J].
Fridman, Emilia ;
Bar Am, Netzer .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) :1500-1527
[9]   Robust sampled-data control of a class of semilinear parabolic systems [J].
Fridman, Emilia ;
Blighovsky, Anatoly .
AUTOMATICA, 2012, 48 (05) :826-836
[10]   SLIDING MODE CONTROL OF THE ORR-SOMMERFELD EQUATION CASCADED BY BOTH THE SQUIRE EQUATION AND ODE IN THE PRESENCE OF BOUNDARY DISTURBANCES [J].
Gu, Jian-Jun ;
Wang, Jun-Min .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) :837-867