Alzheimer's Disease: The Downside of a Highly Evolved Parietal Lobe?

被引:55
作者
Bruner, Emiliano [1 ]
Jacobs, Heidi I. L. [2 ]
机构
[1] Ctr Nacl Invest Evoluc Humana, Burgos 09002, Spain
[2] Forschungszentrum Julich, Inst Neurosci & Med 3, D-52425 Julich, Germany
关键词
Aging; brain evolution; dementia; Homo sapiens; metabolism; paleoneurology; MILD COGNITIVE IMPAIRMENT; MONKEY RETROSPLENIAL CORTEX; DEFAULT MODE NETWORK; FUNCTIONAL CONNECTIVITY; BRAIN TEMPERATURE; TEMPORAL-LOBE; NONHUMAN PRIMATE; MACAQUE MONKEY; WHITE-MATTER; BIVARIATE APPROACH;
D O I
10.3233/JAD-122299
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Clinical grade Alzheimer's disease (AD) is only described in humans. Recent imaging studies in early AD patients showed that the parietal areas display the most prominent metabolic impairments. So far, neuroimaging studies have not been able to explain why the medial parietal regions possess this hub characteristic in AD. Paleoneurological and neuroanatomical studies suggest that our species, Homo sapiens, has a unique and derived organization of the parietal areas, which are involved in higher cognitive functions. Combining evidence from neuroimaging, paleontology, and comparative anatomy, we suggest that the vulnerability of the parietal lobe to neurodegenerative processes may be associated with the origin of our species. The species-specific parietal morphology in modern humans largely influenced the brain spatial organization, and it involved changes in vascularization and energy management, which may underlie the sensitivity of these areas to metabolic impairment. Metabolic constraints and anatomical evolutionary changes in the medial parietal regions of modern humans may be important in early AD onset. Taking into account the species-specific adaptations of the modern human parietal areas and their association with AD, we hypothesize that AD can be the evolutionary drawback of the specialized structure of our parietal lobes. The cognitive advantage is associated with increased sensitivity to neurodegenerative processes which, being limited to the post-reproductive period, have a minor effect on the overall genetic fitness. The changes of energy requirements associated with form and size variations at the parietal areas may support the hypothesis of AD as a metabolic syndrome.
引用
收藏
页码:227 / 240
页数:14
相关论文
共 50 条
[21]   Increased Intrinsic Activity of Medial-Temporal Lobe Subregions is Associated with Decreased Cortical Thickness of Medial-Parietal Areas in Patients with Alzheimer's Disease Dementia [J].
Pasquini, Lorenzo ;
Scherr, Martin ;
Tahmasian, Masoud ;
Myers, Nicholas E. ;
Ortner, Marion ;
Kurz, Alexander ;
Foerstl, Hans ;
Zimmer, Claus ;
Grimmer, Timo ;
Akhrif, Atae ;
Wohlschlaeger, Afra M. ;
Riedl, Valentin ;
Song, Christian .
JOURNAL OF ALZHEIMERS DISEASE, 2016, 51 (01) :313-326
[22]   The Role of Magnetoencephalography in the Early Stages of Alzheimer's Disease [J].
Lopez-Sanz, David ;
Serrano, Noelia ;
Maestu, Fernando .
FRONTIERS IN NEUROSCIENCE, 2018, 12
[23]   Slowed Temporal and Parietal Cerebrovascular Response in Patients with Alzheimer's Disease [J].
Holmes, Kenneth R. ;
Tang-Wai, David ;
Sam, Kevin ;
McKetton, Larissa ;
Poublanc, Julien ;
Crawley, Adrian P. ;
Sobczyk, Olivia ;
Cohn, Melanie ;
Duffin, James ;
Tartaglia, Maria Carmela ;
Black, Sandra E. ;
Fisher, Joseph A. ;
Wasserman, Bruce ;
Mikulis, David J. .
CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2020, 47 (03) :366-373
[24]   Disconnection of Frontal and Parietal Areas Contributes to Impaired Attention in Very Early Alzheimer's Disease [J].
Neufang, Susanne ;
Akhrif, Atae ;
Riedl, Valentin ;
Foerstl, Hans ;
Kurz, Alexander ;
Zimmer, Claus ;
Sorg, Christian ;
Wohlschlaeger, Afra M. .
JOURNAL OF ALZHEIMERS DISEASE, 2011, 25 (02) :309-321
[25]   Tracking Alzheimer's disease [J].
Thompson, Paul M. ;
Hayashi, Kiralee M. ;
Dutton, Rebecca A. ;
Chiang, Ming-Chang ;
Leow, Alex D. ;
Sowell, Elizabeth R. ;
De Zubicaray, Greig ;
Becker, James T. ;
Lopez, Oscar L. ;
Aizenstein, Howard J. ;
Toga, Arthur W. .
IMAGING AND THE AGING BRAIN, 2007, 1097 :183-214
[26]   Prediabetes and Alzheimer's Disease [J].
Bitra, V. R. ;
Rapaka, Deepthi ;
Akula, Annapurna .
INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2015, 77 (05) :511-514
[27]   The diffeomorphometry of temporal lobe structures in preclinical Alzheimer's disease [J].
Miller, Michael I. ;
Younes, Laurent ;
Ratnanather, J. Tilak ;
Brown, Timothy ;
Trinh, Huong ;
Postell, Elizabeth ;
Lee, David S. ;
Wang, Mei-Cheng ;
Mori, Susumu ;
O'Brien, Richard ;
Albert, Marilyn .
NEUROIMAGE-CLINICAL, 2013, 3 :352-360
[28]   Medial Temporal Lobe Subregional Atrophy in Aging and Alzheimer's Disease: A Longitudinal Study [J].
Chauveau, Lea ;
Kuhn, Elizabeth ;
Palix, Cassandre ;
Felisatti, Francesca ;
Ourry, Valentin ;
de La Sayette, Vincent ;
Chetelat, Gael ;
de Flores, Robin .
FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
[29]   Potential Similarities in Temporal Lobe Epilepsy and Alzheimer's Disease: From Clinic to Pathology [J].
Li, Bin-Yin ;
Chen, Sheng-Di .
AMERICAN JOURNAL OF ALZHEIMERS DISEASE AND OTHER DEMENTIAS, 2015, 30 (08) :723-728
[30]   Functional Connectivity Alterations of the Temporal Lobe and Hippocampus in Semantic Dementia and Alzheimer's Disease [J].
Schwab, Simon ;
Afyouni, Soroosh ;
Chen, Yan ;
Han, Zaizhu ;
Guo, Qihao ;
Dierks, Thomas ;
Wahlund, Lars-Olof ;
Grieder, Matthias .
JOURNAL OF ALZHEIMERS DISEASE, 2020, 76 (04) :1461-1475