Differential Evolution with an Evolution Path: A DEEP Evolutionary Algorithm

被引:130
作者
Li, Yuan-Long [1 ,2 ,3 ,4 ]
Zhan, Zhi-Hui [1 ,2 ,3 ,4 ]
Gong, Yue-Jiao [1 ,2 ,3 ,4 ]
Chen, Wei-Neng [1 ,2 ,3 ,4 ]
Zhang, Jun [1 ,2 ,3 ,4 ]
Li, Yun [5 ]
机构
[1] Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China
[2] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou 510275, Guangdong, Peoples R China
[3] Minist Educ, Engn Res Ctr Supercomp Engn Software, Guangzhou 510275, Guangdong, Peoples R China
[4] Educ Dept Guangdong Prov, Key Lab Software Technol, Guangzhou 510275, Guangdong, Peoples R China
[5] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
基金
中国国家自然科学基金;
关键词
Cumulative learning; differential evolution (DE); evolution path (EP); evolutionary computation; PARTICLE SWARM OPTIMIZATION; GLOBAL OPTIMIZATION; COLONY OPTIMIZATION; MUTATION; NEIGHBORHOOD; CROSSOVER; ADAPTATION; PARAMETERS;
D O I
10.1109/TCYB.2014.2360752
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC' 13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs.
引用
收藏
页码:1798 / 1810
页数:13
相关论文
共 52 条
[1]   Estimation of particle swarm distribution algorithms: Combining the benefits of PSO and EDAs [J].
Ahn, Chang Wook ;
An, Jinung ;
Yoo, Jae-Chern .
INFORMATION SCIENCES, 2012, 192 :109-119
[2]   Multimodal Optimization Using a Biobjective Differential Evolution Algorithm Enhanced With Mean Distance-Based Selection [J].
Basak, Aniruddha ;
Das, Swagatam ;
Tan, Kay Chen .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (05) :666-685
[3]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[4]   Differential Evolution With Neighborhood and Direction Information for Numerical Optimization [J].
Cai, Yiqiao ;
Wang, Jiahai .
IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) :2202-2215
[5]   Particle Swarm Optimization with an Aging Leader and Challengers [J].
Chen, Wei-Neng ;
Zhang, Jun ;
Lin, Ying ;
Chen, Ni ;
Zhan, Zhi-Hui ;
Chung, Henry Shu-Hung ;
Li, Yun ;
Shi, Yu-Hui .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (02) :241-258
[6]  
Das S., 2010, PROBLEM DIFINITIONS
[7]   An Adaptive Differential Evolution Algorithm for Global Optimization in Dynamic Environments [J].
Das, Swagatam ;
Mandal, Ankush ;
Mukherjee, Rohan .
IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (06) :966-978
[8]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[9]   Differential Evolution Using a Neighborhood-Based Mutation Operator [J].
Das, Swagatam ;
Abraham, Ajith ;
Chakraborty, Uday K. ;
Konar, Amit .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (03) :526-553
[10]   A computationally efficient evolutionary algorithm for real-parameter optimization [J].
Deb, K ;
Anand, A ;
Joshi, D .
EVOLUTIONARY COMPUTATION, 2002, 10 (04) :371-395