Data-Driven Models for Objective Grading Improvement of Parkinson's Disease

被引:15
作者
Butt, Abdul Haleem [1 ,2 ,6 ]
Rovini, Erika [1 ,2 ]
Fujita, Hamido [3 ]
Maremmani, Carlo [4 ]
Cavallo, Filippo [1 ,2 ,5 ]
机构
[1] Scuola Super Sant Anna, BioRobot Inst, Viale Rinaldo Piaggio 34, I-56025 Pontedera, Italy
[2] Scuola Super Sant Anna, Dept Excellence Robot & AI, Piazza Martiri Liberta 33, I-56127 Pisa, Italy
[3] Iwate Prefectural Univ, Intelligent Software Syst Lab, 152-52Sugo, Takizawa, Iwate, Japan
[4] Osped Apuane AUSL Toscana Nord Ovest, UO Neurol, Viale Mattei 21, I-54100 Massa, Italy
[5] Univ Florence, Dept Ind Engn, Via Santa Marta 3, I-50139 Florence, Italy
[6] Air Univ Islamabad Pakistan, Fac Comp & Artificial Intelligence, Creat Technol Dept, Serv Rd E-9-E-8, Islamabad, Pakistan
关键词
ANFIS; Artificial intelligence; Regression models; Predictive methods; Parkinson disease severity;
D O I
10.1007/s10439-020-02628-4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Parkinson's disease (PD) is a progressive disorder of the central nervous system that causes motor dysfunctions in affected patients. Objective assessment of symptoms can support neurologists in fine evaluations, improving patients' quality of care. Herein, this study aimed to develop data-driven models based on regression algorithms to investigate the potential of kinematic features to predict PD severity levels. Sixty-four patients with PD (PwPD) and 50 healthy subjects of control (HC) were asked to perform 13 motor tasks from the MDS-UPDRS III while wearing wearable inertial sensors. Simultaneously, the clinician provided the evaluation of the tasks based on the MDS-UPDRS scores. One hundred-ninety kinematic features were extracted from the inertial motor data. Data processing and statistical analysis identified a set of parameters able to distinguish between HC and PwPD. Then, multiple feature selection methods allowed selecting the best subset of parameters for obtaining the greatest accuracy when used as input for several predicting regression algorithms. The maximum correlation coefficient, equal to 0.814, was obtained with the adaptive neuro-fuzzy inference system (ANFIS). Therefore, this predictive model could be useful as a decision support system for a reliable objective assessment of PD severity levels based on motion performance, improving patients monitoring over time.
引用
收藏
页码:2976 / 2987
页数:12
相关论文
共 31 条
  • [1] Al Janabi KBS., 2018, Int J Adv Comput Sci Technol, V8, P1
  • [2] P Value and the Theory of Hypothesis Testing An Explanation for New Researchers
    Biau, David Jean
    Jolles, Brigitte M.
    Porcher, Raphael
    [J]. CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2010, 468 (03) : 885 - 892
  • [3] Automatic detection of Parkinson's disease based on acoustic analysis of speech
    Braga, Diogo
    Madureira, Ana M.
    Coelho, Luis
    Ajith, Reuel
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 77 : 148 - 158
  • [4] Objective and automatic classification of Parkinson disease with Leap Motion controller
    Butt, A. H.
    Rovini, E.
    Dolciotti, C.
    De Petris, G.
    Bongioanni, P.
    Carboncini, M. C.
    Cavallo, F.
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2018, 17
  • [5] Biomechanical parameter assessment for classification of Parkinson's disease on clinical scale
    Butt, Abdul Haleem
    Rovini, Erika
    Esposito, Dario
    Rossi, Giuseppe
    Maremmani, Carlo
    Cavallo, Filippo
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (05):
  • [6] Upper limb motor pre-clinical assessment in Parkinson's disease using machine learning
    Cavallo, Filippo
    Moschetti, Alessandra
    Esposito, Dario
    Maremmani, Carlo
    Rovini, Erika
    [J]. PARKINSONISM & RELATED DISORDERS, 2019, 63 : 111 - 116
  • [7] A comparison of regression methods for remote tracking of Parkinson's disease progression
    Eskidere, Omer
    Ertas, Figen
    Hanilci, Cemal
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (05) : 5523 - 5528
  • [8] Technology in Parkinson's disease: Challenges and opportunities
    Espay, Alberto J.
    Bonato, Paolo
    Nahab, Fatta B.
    Maetzler, Walter
    Dean, John M.
    Klucken, Jochen
    Eskofier, Bjoern M.
    Merola, Aristide
    Horak, Fay
    Lang, Anthony E.
    Reilmann, Ralf
    Giuffrida, Joe
    Nieuwboer, Alice
    Horne, Malcolm
    Little, Max A.
    Litvan, Irene
    Simuni, Tanya
    Dorsey, E. Ray
    Burack, Michelle A.
    Kubota, Ken
    Kamondi, Anita
    Godinho, Catarina
    Daneault, Jean-Francois
    Mitsi, Georgia
    Krinke, Lothar
    Hausdorff, Jeffery M.
    Bloem, Bastiaan R.
    Papapetropoulos, Spyros
    [J]. MOVEMENT DISORDERS, 2016, 31 (09) : 1272 - 1282
  • [9] GAO C, 2018, SCI REP UK
  • [10] Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): Process, format, and clinimetric testing plan
    Goetz, Christopher G.
    Fahn, Stanley
    Martinez-Martin, Pablo
    Poewe, Werner
    Sampaio, Cristina
    Stebbins, Glenn T.
    Stern, Matthew B.
    Tilley, Barbara C.
    Dodel, Richard
    Dubois, Bruno
    Holloway, Robert
    Jankovic, Joseph
    Kulisevsky, Jaime
    Lang, Anthony E.
    Lees, Andrew
    Leurgans, Sue
    LeWitt, Peter A.
    Nyenhuis, David
    Olanow, C. Warren
    Rascol, Olivier
    Schrag, Anette
    Teresi, Jeanne A.
    van Hilten, Jacobus J.
    LaPelle, Nancy
    [J]. MOVEMENT DISORDERS, 2007, 22 (01) : 41 - 47