Maximum principle for the generalized time-fractional diffusion equation

被引:270
作者
Luchko, Yury [1 ]
机构
[1] Tech Univ Appl Sci Berlin, Dept Math 2, D-13353 Berlin, Germany
关键词
Caputo-Dzherbashyan fractional derivative; Time-fractional diffusion equation; Initial-boundary-value problems; Maximum principle; Uniqueness theorem; CAUCHY-PROBLEM;
D O I
10.1016/j.jmaa.2008.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, a maximum principle for the generalized time-fractional diffusion equation over an open bounded domain G x (0. T). G subset of R-n is formulated and proved. The proof of the maximum principle is based on an extremum principle for the Caputo-Dzherbashyan fractional derivative that is given in the paper, too. The maximum principle is then applied to show that the initial-boundary-value problem for the generalized time-fractional diffusion equation possesses at most one classical solution and this Solution continuously depends on the initial and boundary conditions. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 223
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
[Anonymous], ANN GEOFISICA
[3]  
BAZHLEKOVA EG, 1998, P 2 INT WORKSH BULG, P32
[4]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[5]   Polymer translocation through a nanopore: A showcase of anomalous diffusion [J].
Dubbeldam, J. L. A. ;
Milchev, A. ;
Rostiashvili, V. G. ;
Vilgis, T. A. .
PHYSICAL REVIEW E, 2007, 76 (01)
[6]   Cauchy problem for fractional diffusion equations [J].
Eidelman, SD ;
Kochubei, AN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) :211-255
[7]  
Freed A., 2002, first annual report
[8]  
Gorenflo R., 2000, Fract Calc Appl Anal, V3, P249
[9]  
Gorenflo R., 1998, FRACT CALC APPL ANAL, V1, P167
[10]  
Hilfer R., 2000, World Sci.