Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation

被引:493
作者
Huang, Stanley Ching-Cheng [1 ]
Smith, Amber M. [1 ]
Everts, Bart [4 ]
Colonna, Marco [1 ]
Pearce, Erika L. [5 ]
Schilling, Joel D. [1 ,2 ,3 ]
Pearce, Edward J. [5 ,6 ]
机构
[1] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Diabet Cardiovasc Dis Ctr, St Louis, MO 63110 USA
[4] Leiden Univ, Med Ctr, Dept Parasitol, NL-2333 AA Leiden, Netherlands
[5] Max Planck Inst Immunobiol & Epigenet, Dept Immunometab, D-79108 Freiburg, Germany
[6] Univ Freiburg, Fac Biol, D-79104 Freiburg, Germany
关键词
T-CELLS; MAMMALIAN TARGET; COMPLEX; MTOR; POLARIZATION; KINASE; CANCER; DIFFERENTIATION; AKT; PHOSPHORYLATION;
D O I
10.1016/j.immuni.2016.09.016
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Macrophage activation status is intrinsically linked to metabolic remodeling. Macrophages stimulated by interleukin 4 (IL-4) to become alternatively (or, M2) activated increase fatty acid oxidation and oxidative phosphorylation; these metabolic changes are critical for M2 activation. Enhanced glucose utilization is also characteristic of the M2 metabolic signature. Here, we found that increased glucose utilization is essential for M2 activation. Increased glucose metabolism in IL-4-stimulated macrophages required the activation of the mTORC2 pathway, and loss of mTORC2 in macrophages suppressed tumor growth and decreased immunity to a parasitic nematode. Macrophage colony stimulating factor (M-CSF) was implicated as a contributing upstream activator of mTORC2 in a pathway that involved PI3K and AKT. mTORC2 operated in parallel with the IL-4R alpha-Stat6 pathway to facilitate increased glycolysis during M2 activation via the induction of the transcription factor IRF4. IRF4 expression required both mTORC2 and Stat6 pathways, providing an underlying mechanism to explain how glucose utilization is increased to support M2 activation.
引用
收藏
页码:817 / 830
页数:14
相关论文
共 46 条
[1]   mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue [J].
Albert, Verena ;
Svensson, Kristoffer ;
Shimobayashi, Mitsugu ;
Colombi, Marco ;
Munoz, Sergio ;
Jimenez, Veronica ;
Handschin, Christoph ;
Bosch, Fatima ;
Hall, Michael N. .
EMBO MOLECULAR MEDICINE, 2016, 8 (03) :232-246
[2]   The TSC-mTOR pathway regulates macrophage polarization [J].
Byles, Vanessa ;
Covarrubias, Anthony J. ;
Ben-Sahra, Issam ;
Lamming, Dudley W. ;
Sabatini, David M. ;
Manning, Brendan D. ;
Horng, Tiffany .
NATURE COMMUNICATIONS, 2013, 4
[3]   C13orf31 (FAMIN) is a central regulator of immunometabolic function [J].
Cader, M. Zaeem ;
Boroviak, Katharina ;
Zhang, Qifeng ;
Assadi, Ghazaleh ;
Kempster, Sarah L. ;
Sewell, Gavin W. ;
Saveljeva, Svetlana ;
Ashcroft, Jonathan W. ;
Clare, Simon ;
Mukhopadhyay, Subhankar ;
Brown, Karen P. ;
Tschurtschenthaler, Markus ;
Raine, Tim ;
Doe, Brendan ;
Chilvers, Edwin R. ;
Griffin, Jules L. ;
Kaneider, Nicole C. ;
Floto, R. Andres ;
D'Amato, Mauro ;
Bradley, Allan ;
Wakelam, Michael J. O. ;
Dougan, Gordon ;
Kaser, Arthur .
NATURE IMMUNOLOGY, 2016, 17 (09) :1046-1056
[4]   Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression [J].
Chang, Chih-Hao ;
Qiu, Jing ;
O'Sullivan, David ;
Buck, Michael D. ;
Noguchi, Takuro ;
Curtis, Jonathan D. ;
Chen, Qiongyu ;
Gindin, Mariel ;
Gubin, Matthew M. ;
van der Windt, Gerritje J. W. ;
Tonc, Elena ;
Schreiber, Robert D. ;
Pearce, Edward J. ;
Pearce, Erika L. .
CELL, 2015, 162 (06) :1229-1241
[5]   Phosphatidylinostitol-3 kinase and phospholipase C enhance CSF-1-dependent macrophage survival by controlling glucose uptake [J].
Chang, Margaret ;
Hamilton, John A. ;
Scholz, Glen M. ;
Masendycz, Paul ;
Macaulay, S. Lance ;
Elsegood, Caryn L. .
CELLULAR SIGNALLING, 2009, 21 (09) :1361-1369
[6]   TORC-Specific Phosphorylation of Mammalian Target of Rapamycin (mTOR): Phospho-Ser2481 Is a Marker for Intact mTOR Signaling Complex 2 [J].
Copp, Jeremy ;
Manning, Gerard ;
Hunter, Tony .
CANCER RESEARCH, 2009, 69 (05) :1821-1827
[7]   Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation [J].
Covarrubias, Anthony J. ;
Aksoylar, Halil Ibrahim ;
Yu, Jiujiu ;
Snyder, Nathaniel W. ;
Worth, Andrew J. ;
Iyer, Shankar S. ;
Wang, Jiawei ;
Ben-Sahra, Issam ;
Byles, Vanessa ;
Polynne-Stapornkul, Tiffany ;
Espinosa, Erika C. ;
Lamming, Dudley ;
Manning, Brendan D. ;
Zhang, Yijing ;
Blair, Ian A. ;
Horng, Tiffany .
ELIFE, 2016, 5
[8]   Control of macrophage metabolism and activation by mTOR and Akt signaling [J].
Covarrubias, Anthony J. ;
Aksoylar, H. Ibrahim ;
Horng, Tiffany .
SEMINARS IN IMMUNOLOGY, 2015, 27 (04) :286-296
[9]   The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2 [J].
Delgoffe, Greg M. ;
Pollizzi, Kristen N. ;
Waickman, Adam T. ;
Heikamp, Emily ;
Meyers, David J. ;
Horton, Maureen R. ;
Xiao, Bo ;
Worley, Paul F. ;
Powell, Jonathan D. .
NATURE IMMUNOLOGY, 2011, 12 (04) :295-U117
[10]   The mTOR Kinase Differentially Regulates Effector and Regulatory T Cell Lineage Commitment [J].
Delgoffe, Greg M. ;
Kole, Thomas P. ;
Zheng, Yan ;
Zarek, Paul E. ;
Matthews, Krystal L. ;
Xiao, Bo ;
Worley, Paul F. ;
Kozma, Sara C. ;
Powell, Jonathan D. .
IMMUNITY, 2009, 30 (06) :832-844