Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion

被引:33
作者
Liu, Huimin [1 ]
Bian, Dongfen [2 ,3 ]
Pu, Xueke [4 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[4] Chongqing Univ, Dept Math, Chongqing 401331, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2019年 / 70卷 / 03期
关键词
Global well-posedness; 3D Boussinesq-MHD system; Strong and smooth solution; BOUNDARY VALUE-PROBLEM; PARTIAL REGULARITY; WEAK SOLUTIONS; EQUATIONS; VISCOSITY; EXISTENCE;
D O I
10.1007/s00033-019-1126-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show the global existence and uniqueness of strong and smooth large solutions to the 3D Boussinesq-MHD system without heat diffusion. Since the temperature satisfies a transport equation, in order to get high regularity of temperature, we need to use the combination of estimates about velocity and magnetic field. Moreover, our system involves a nonlinear damping term in the momentum equations due to the Brinkman-Forchheimer-extended-Darcy law of flow in porous media.
引用
收藏
页数:19
相关论文
共 37 条
[31]   Global Small Solutions to an MHD-Type System: The Three-Dimensional Case [J].
Lin, Fanghua ;
Zhang, Ping .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (04) :531-580
[32]   Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence [J].
Pratt, J. ;
Busse, A. ;
Mueller, W. -C. .
ASTRONOMY & ASTROPHYSICS, 2013, 557
[33]   Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion [J].
Ren, Xiaoxia ;
Wu, Jiahong ;
Xiang, Zhaoyin ;
Zhang, Zhifei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (02) :503-541
[34]   SOME MATHEMATICAL QUESTIONS RELATED TO THE MHD EQUATIONS [J].
SERMANGE, M ;
TEMAM, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (05) :635-664
[35]  
Temam R., 1977, Studies in Mathematics and its Applications, V2
[36]  
Titi E. S., ARXIV180510661V2
[37]   Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity [J].
Wang, Chao ;
Zhang, Zhifei .
ADVANCES IN MATHEMATICS, 2011, 228 (01) :43-62