Effect of p-doping on he intensity noise of epitaxial quantum dot lasers on silicon

被引:23
作者
Duan, Jianan [1 ]
Zhou, Yueguang [1 ,6 ]
Dong, Bozhang [1 ]
Huang, Heming [1 ]
Norman, Justin C. [2 ,3 ]
Jung, Daehwan [3 ,5 ]
Zhang, Zeyu [4 ]
Wang, Cheng [6 ]
Bowers, John E. [2 ,3 ,4 ]
Grillot, Frederic [1 ,7 ]
机构
[1] Inst Polytech Paris, Telecom Paris, LTCI, 19 Pl Marguerite Perey, F-91120 Palaiseau, France
[2] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Inst Energy Efficiency, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[5] Korea Inst Sci & Technol, Ctr Optoelect Mat & Devices, Seoul 02792, South Korea
[6] Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[7] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA
基金
中国国家自然科学基金;
关键词
DENSITY-OF-STATES; MODULATION CHARACTERISTICS;
D O I
10.1364/OL.395499
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This work experimentally investigates the impact of p-doping on the relative intensity noise (RIN) properties and subsequently on the modulation properties of semiconductor quantum dot (QD) lasers epitaxially grown on silicon. Owing to the low threading dislocation density and the p-modulation doped GaAs barrier layer in the active region, the RIN level is found very stable with temperature with a minimum value of -150 dB/Hz. The dynamical features extracted from the RIN spectra show that p-doping between zero and 20 holes/dot strongly modifies the modulation properties and gain nonlinearities through increased internal losses in the active region and thereby hinders the maximum achievable bandwidth. Overall, this Letter is important for designing future high-speed and lownoise QD devices integrated in future photonic integrated circuits. (C) 2020 Optical Society of America
引用
收藏
页码:4887 / 4890
页数:4
相关论文
共 28 条
[1]   Systematic study of the. effects of modulation p-doping on 1.3-μm quantum-dot lasers [J].
Alexander, Ryan R. ;
Childs, David T. D. ;
Agarwal, Harsh ;
Groom, Kristian M. ;
Liu, Hui-Yun ;
Hopkinson, Mark ;
Hogg, Richard A. ;
Ishida, Mitsuru ;
Yamamoto, Tsuyoshi ;
Sugawara, Mitsuru ;
Arakawa, Yasuhiko ;
Badcock, Tom J. ;
Royce, Richard J. ;
Mowbray, David J. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2007, 43 (11-12) :1129-1139
[2]   Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser [J].
Capua, A. ;
Rozenfeld, L. ;
Mikhelashvili, V. ;
Eisenstein, G. ;
Kuntz, M. ;
Laemmlin, M. ;
Bimberg, D. .
OPTICS EXPRESS, 2007, 15 (09) :5388-5393
[3]   On quantum-dot lasing at gain peak with linewidth enhancement factor αH=0 [J].
Chow, Weng W. ;
Zhang, Zeyu ;
Norman, Justin C. ;
Liu, Songtao ;
Bowers, John E. .
APL PHOTONICS, 2020, 5 (02)
[4]  
Coldren L.A., 2012, Diode Lasers and Photonic Integrated Circuits, V218
[5]   GaAs-Based Quantum Dot Lasers [J].
Crowley, Mark T. ;
Naderi, Nader A. ;
Su, Hui ;
Grillot, Frederic ;
Lester, Luke F. .
ADVANCES IN SEMICONDUCTOR LASERS, 2012, 86 :371-417
[6]   Modulation characteristics of quantum-dot lasers: The influence of P-type doping and the electronic density of states on obtaining high speed [J].
Deppe, DG ;
Huang, H ;
Shchekin, OB .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (12) :1587-1593
[7]  
Duan J, 2018, IEEE J QUANTUM ELECT, V54, P1
[8]   1.3-μm Reflection Insensitive InAs/GaAs Quantum Dot Lasers Directly Grown on Silicon [J].
Duan, Jianan ;
Huang, Heming ;
Dong, Bozhang ;
Jung, Daehwan ;
Norman, Justin C. ;
Bowers, John E. ;
Grillot, Frederic .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (05) :345-348
[9]   Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1.3-μm InAs-GaAs Quantum-Dot Lasers [J].
Grillot, Frederic ;
Dagens, Beatrice ;
Provost, Jean-Guy ;
Su, Hui ;
Lester, Luke F. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2008, 44 (9-10) :946-951
[10]   The impact of p-doping on the static and dynamic properties of 1.5 μm quantum dash lasers on InP [J].
Hein, S. ;
von Hinten, V. ;
Hoefling, S. ;
Forchel, A. .
APPLIED PHYSICS LETTERS, 2008, 92 (01)