Soliton mobility in disordered lattices

被引:8
作者
Sun, Zhi-Yuan [1 ]
Fishman, Shmuel [1 ]
Soffer, Avy [2 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-320000 Haifa, Israel
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 04期
基金
以色列科学基金会; 美国国家科学基金会;
关键词
DISCRETE BREATHERS; PHOTONIC LATTICES; LOCALIZATION;
D O I
10.1103/PhysRevE.92.040903
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate soliton mobility in the disordered Ablowitz-Ladik (AL) model and the standard nonlinear Schrodinger (NLS) lattice with the help of an effective potential generalizing the Peierls-Nabarro potential. This potential results from a deviation from integrability, which is due to randomness for the AL model, and both randomness and lattice discreteness for the NLS lattice. The statistical properties of such a potential are analyzed, and it is shown how the soliton mobility is affected by its size. The usefulness of this effective potential in studying soliton dynamics is demonstrated numerically. Furthermore, we propose two ways to enhance soliton transport in the presence of disorder: one is to use specific realizations of randomness, and the other is to consider a specific soliton pair.
引用
收藏
页数:5
相关论文
共 20 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[2]  
[Anonymous], 2002, Probability, Random Variables, andStochastic Processes
[3]   Discrete Breathers: Localization and transfer of energy in discrete Hamiltonian nonlinear systems [J].
Aubry, S. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) :1-30
[4]   Discrete breather and its stability in a general discrete nonlinear Schrodinger equation with disorder [J].
Bai, Xiao-Dong ;
Xue, Ju-Kui .
PHYSICAL REVIEW E, 2012, 86 (06)
[5]   Perturbation theories of a discrete, integrable nonlinear Schrodinger equation [J].
Cai, D ;
Bishop, AR ;
GronbechJensen, N .
PHYSICAL REVIEW E, 1996, 53 (04) :4131-4136
[6]   Suppression of transport of an interacting elongated Bose-Einstein condensate in a random potential -: art. no. 170409 [J].
Clément, D ;
Varón, AF ;
Hugbart, M ;
Retter, JA ;
Bouyer, P ;
Sanchez-Palencia, L ;
Gangardt, DM ;
Shlyapnikov, GV ;
Aspect, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (17)
[7]   Discrete breathers - Advances in theory and applications [J].
Flach, Sergej ;
Gorbach, Andrey V. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 467 (1-3) :1-116
[8]   Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide [J].
Fort, C ;
Fallani, L ;
Guarrera, V ;
Lye, JE ;
Modugno, M ;
Wiersma, DS ;
Inguscio, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (17)
[9]   Discrete breathers in Bose-Einstein condensates [J].
Franzosi, Roberto ;
Livi, Roberto ;
Oppo, Gian-Luca ;
Politi, Antonio .
NONLINEARITY, 2011, 24 (12) :R89-R122
[10]   Power controlled soliton stability and steering in lattices with saturable nonlinearity [J].
Hadzievski, L ;
Maluckov, A ;
Stepic, M ;
Kip, D .
PHYSICAL REVIEW LETTERS, 2004, 93 (03) :033901-1