Torrefaction/biochar production by microwave and conventional slow pyrolysis - comparison of energy properties

被引:58
作者
Gronnow, Mark J. [1 ]
Budarin, Vitaliy L. [1 ]
Masek, Ondrej [2 ]
Crombie, Kyle N. [2 ]
Brownsort, Peter A. [2 ]
Shuttleworth, Peter S. [3 ]
Hurst, Peter R. [1 ]
Clark, James H. [1 ]
机构
[1] Univ York, Dept Chem, Green Chem Ctr Excellence, York YO10 5DD, N Yorkshire, England
[2] Univ Edinburgh, Sch Geosci, UK Biochar Res Ctr, Edinburgh, Midlothian, Scotland
[3] CSIC, Inst Ciencia & Tecnol Polimeros, Dept Fis Polimeros Elastomeros & Aplicac Energet, E-28006 Madrid, Spain
来源
GLOBAL CHANGE BIOLOGY BIOENERGY | 2013年 / 5卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
biochar; bioenergy; calorific value; microwave; pyrolysis; torrefaction; BIOCHAR; BIOMASS; COMBUSTION; CONVERSION; GRASS; OIL;
D O I
10.1111/gcbb.12021
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The energy efficiency of torrefaction/pyrolysis of biomass to fuel/biochar was studied using conventional (slow) and microwave (low temperature) pyrolysis. Conventional pyrolysis is approximately three times as energy efficient as microwave pyrolysis, in terms of the energy required to process a unit of feedstock. However, this is more than compensated for by the higher energy content of the condensable and gaseous coproducts from microwave pyrolysis, as these can be utilized to generate the electricity required to drive the process. It is proposed that the most efficient method of torrefaction/biochar production is a combination of conventional heating with catalytic' amount of microwave irradiation.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 30 条
[1]   Heat transfer and kinetics in the pyrolysis of shrinking biomass particle [J].
Babu, BV ;
Chaurasia, AS .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (10) :1999-2012
[2]   Co-firing pulverised coal and biomass: a modeling approach [J].
Backreedy, RI ;
Fletcher, LM ;
Jones, JM ;
Ma, L ;
Pourkashanian, M ;
Williams, A .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 :2955-2964
[3]   Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties [J].
Bridgeman, T. G. ;
Jones, J. M. ;
Shield, I. ;
Williams, P. T. .
FUEL, 2008, 87 (06) :844-856
[4]   An overview of fast pyrolysis of biomass [J].
Bridgwater, AV ;
Meier, D ;
Radlein, D .
ORGANIC GEOCHEMISTRY, 1999, 30 (12) :1479-1493
[5]   Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis [J].
Brown, Tristan R. ;
Wright, Mark M. ;
Brown, Robert C. .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2011, 5 (01) :54-68
[6]   Microwave-mediated pyrolysis of macro-algae [J].
Budarin, Vitaliy L. ;
Zhao, Yizhe ;
Gronnow, Mark J. ;
Shuttleworth, Peter S. ;
Breeden, Simon W. ;
Macquarrie, Duncan J. ;
Clark, James H. .
GREEN CHEMISTRY, 2011, 13 (09) :2330-2333
[7]   Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation [J].
Budarin, Vitaly L. ;
Clark, James H. ;
Lanigan, Brigid A. ;
Shuttleworth, Peter ;
Macquarrie, Duncan J. .
BIORESOURCE TECHNOLOGY, 2010, 101 (10) :3776-3779
[8]   Microwave accelerated steam distillation of essential oil from lavender: A rapid, clean and environmentally friendly approach [J].
Chemat, F ;
Lucchesi, ME ;
Smadja, J ;
Favretto, L ;
Colnaghi, G ;
Visinoni, F .
ANALYTICA CHIMICA ACTA, 2006, 555 (01) :157-160
[9]  
CHP. Focus, 2012, CENTR EL GEN
[10]   Microwave processing of materials [J].
Clark, DE ;
Sutton, WH .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1996, 26 :299-331