A periodic single species model with intermittent unilateral diffusion in two patches

被引:3
作者
Li, Hong-Li [1 ]
Zhang, Long [1 ]
Teng, Zhidong [1 ]
Jiang, Yao-Lin [1 ,2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Math, Xian 710049, Peoples R China
关键词
Intermittent unilateral diffusion; Poincare mapping; yapunov function approach; Periodic solution; Global attractivity; Extinction; PREDATOR-PREY SYSTEM; IMPULSIVE DIFFUSION; VOLTERRA MODELS; PERMANENCE; ENVIRONMENT; DISPERSAL; EXTINCTION; STABILITY; DYNAMICS;
D O I
10.1007/s12190-015-0965-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a periodic single species model with intermittent unilateral diffusion in two patches. By using analytic method, Poincare mapping, Lyapunov function approach, sufficient and necessary conditions on the existence, uniqueness and global attractivity of positive periodic solution and the extinction of species for the considered system are established. Two examples and numerical simulations are presented to validate our theoretical results.
引用
收藏
页码:223 / 244
页数:22
相关论文
共 22 条
[1]   GLOBAL ASYMPTOTIC STABILITY OF LOTKA-VOLTERRA DIFFUSION-MODELS WITH CONTINUOUS-TIME DELAY [J].
BERETTA, E ;
TAKEUCHI, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :627-651
[2]  
BERETTA E, 1987, B MATH BIOL, V49, P431, DOI 10.1016/S0092-8240(87)80005-8
[3]   Permanence and extinction for dispersal population systems [J].
Cui, JA ;
Takeuchi, Y ;
Lin, ZS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) :73-93
[4]   POPULATION DIFFUSION IN A 2-PATCH ENVIRONMENT [J].
FREEDMAN, HI ;
SHUKLA, JB ;
TAKEUCHI, Y .
MATHEMATICAL BIOSCIENCES, 1989, 95 (01) :111-123
[5]   TIME LAGS AND GLOBAL STABILITY IN 2-SPECIES COMPETITION [J].
GOPALSAMY, K .
BULLETIN OF MATHEMATICAL BIOLOGY, 1980, 42 (05) :729-737
[6]   PERMANENCE AND THE DYNAMICS OF BIOLOGICAL-SYSTEMS [J].
HUTSON, V ;
SCHMITT, K .
MATHEMATICAL BIOSCIENCES, 1992, 111 (01) :1-71
[7]   Dynamics of a stage-structured predator-prey model with prey impulsively diffusing between two patches [J].
Jiao, Jianjun ;
Chen, Lansun ;
Cai, Shaohong ;
Wang, Limin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) :2748-2756
[8]   Dynamical analysis of a delayed predator-prey model with impulsive diffusion between two patches [J].
Jiao, Jianjun ;
Yang, Xiaosong ;
Cai, Shaohong ;
Chen, Lansun .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (03) :522-532
[9]   Permanence and global attractivity of an impulsive ratio-dependent predator-prey system in a patchy environment [J].
Liu, Zijian ;
Zhong, Shouming ;
Teng, Zhidong ;
Zhang, Long .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (18) :9791-9804
[10]   Two-patches prey impulsive diffusion periodic predator-prey model [J].
Liu, Zijian ;
Zhong, Shouming ;
Yin, Chun ;
Chen, Wufan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) :2641-2655