On the inexistence of solitons in Einstein-Maxwell-scalar models

被引:27
作者
Herdeiro, Carlos A. R. [1 ]
Oliveira, Joao M. S. [2 ,3 ]
机构
[1] Univ Lisbon, IST, Dept Fis, Ctr Astrofis & Gravitacao CENTRA, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[2] Univ Aveiro, Dept Fis, Campus Santiago, P-3810183 Aveiro, Portugal
[3] CIDMA, Campus Santiago, P-3810183 Aveiro, Portugal
基金
欧盟地平线“2020”;
关键词
solitons; scalar fields; no go theorems; BLACK-HOLES; UNIQUENESS; FIELD; MASS; STATIONARY; EQUATIONS; HORIZONS; PROOF;
D O I
10.1088/1361-6382/ab1859
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Three non-existence results are established for self-gravitating solitons in Einstein-Maxwell-scalar models, wherein the scalar field is, generically, non-minimally coupled to the Maxwell field via a scalar function f (Phi). Firstly, a trivial Maxwell field is considered, which yields a consistent truncation of the full model. In this case, using a scaling (Derrick-type) argument, it is established that no stationary and axisymmetric self-gravitating scalar solitons exist, unless the scalar potential energy is somewhere negative in spacetime. This generalises previous results for the static and strictly stationary cases. Thus, rotation alone cannot support self-gravitating scalar solitons in this class of models. Secondly, constant sign couplings are considered. Generalising a previous argument by Heusler for electro-vacuum, it is established that no static self-gravitating electromagnetic-scalar solitons exist. Thus, a varying (but constant sign) electric permittivity alone cannot support static Einstein-Maxwell-scalar solitons. Finally, the second result is generalised for strictly stationary, but not necessarily static, spacetimes, using a Lichnerowicz-type argument, generalising previous results in models where the scalar and Maxwell fields are not directly coupled. The scope of validity of each of these results points out the possible paths to circumvent them, in order to obtain self-gravitating solitons in Einstein-Maxwell-scalar models.
引用
收藏
页数:18
相关论文
共 70 条
[1]   THE UNIFORMIZATION THEOREM [J].
ABIKOFF, W .
AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (08) :574-592
[2]  
[Anonymous], 1895, Philos. Mag, DOI [10.1080/14786435.2010.547337, DOI 10.1080/14786435.2010.547337, DOI 10.1080/14786449508620739]
[3]   Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories [J].
Antoniou, G. ;
Bakopoulos, A. ;
Kanti, P. .
PHYSICAL REVIEW D, 2018, 97 (08)
[4]   Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories [J].
Antoniou, G. ;
Bakopoulos, A. ;
Kanti, P. .
PHYSICAL REVIEW LETTERS, 2018, 120 (13)
[5]   PARTICLE-LIKE SOLUTIONS OF THE EINSTEIN-YANG-MILLS EQUATIONS [J].
BARTNIK, R ;
MCKINNON, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :141-144
[6]   TRANSCENDENCE OF LAW OF BARYON-NUNBER CONSERVATION IN BLACK HOLE PHYSICS [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW LETTERS, 1972, 28 (07) :452-+
[7]  
BIZON P, 1994, ACTA PHYS POL B, V25, P877
[8]   COLORED BLACK-HOLES [J].
BIZON, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2844-2847
[9]   Radial perturbations of the scalarized Einstein-Gauss-Bonnet black holes [J].
Blazquez-Salcedo, Jose Luis ;
Doneva, Daniela D. ;
Kunz, Jutta ;
Yazadjiev, Stoytcho S. .
PHYSICAL REVIEW D, 2018, 98 (08)
[10]   Axionic instabilities and new black hole solutions [J].
Boskovic, Mateja ;
Brito, Richard ;
Cardoso, Vitor ;
Ikeda, Taishi ;
Witek, Helvi .
PHYSICAL REVIEW D, 2019, 99 (03)