A MoO3/MoO2-CP self-supporting heterostructure for modification of lithium-sulfur batteries

被引:51
作者
Yang, Weiwei [1 ]
Wei, Yi [1 ]
Chen, Qian [1 ]
Qin, Shengjian [2 ]
Zuo, Jinghan [1 ]
Tan, Shengdong [1 ]
Zhai, Pengbo [1 ]
Cui, Shiqiang [1 ]
Wang, Haowu [1 ]
Jin, Chunqiao [3 ]
Xiao, Jing [1 ]
Liu, Wei [1 ]
Shang, Jiaxiang [1 ]
Gong, Yongji [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Shijiazhuang Tiedao Univ, Sch Mat Sci & Engn, Shijiazhuang 050043, Hebei, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Chem & Environm Engn, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORK; POLYSULFIDES; NANOSHEETS; CONVERSION; IMMOBILIZATION; SEPARATORS; DESIGN;
D O I
10.1039/d0ta01664k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterostructures have attracted extensive attention because of their unique structure and multiple functions, showing potential for various energy storage and conversion techniques. Here, inspired by the potential advantages of heterostructures, we design an insulating MoO3/conducting MoO(2)heterostructure as a host for lithium octasulfide (Li2S8) for lithium-sulfur batteries. Different from other heterostructures with a sharp interface, the transition state of MoO(x)is proved to have a large atomic ratio (similar to 18%). Benefiting from the good conductivity of MoO(2)and the strong polarity of MoO(x)to adsorb LiPS, the initial specific capacity of the MoO3/MoO2-CP-Li(2)S(8)cathode is 898.4 mA h g(-1)and drops to 828.1 mA h g(-1)after 500 cycles at 0.5C, showing a 92.2% retention of the initial capacity. Meanwhile, it can deliver an initial specific capacity of 580.5 mA h g(-1)at 2.5C with a capacity retention of 82.8% after 850 cycles. This work shows that the heterostructures of 2D materials are promising as a Li(2)S(8)host because of their multiple functions and may provide new strategies to design electrochemical electrodes.
引用
收藏
页码:15816 / 15821
页数:6
相关论文
共 49 条
[1]  
[Anonymous], 1996, COMP MATER SCI
[2]  
[Anonymous], 2016, NAT ENERGY, DOI DOI 10.1038/NENERGY.2016.132
[3]  
[Anonymous], 2013, CHEM REV, DOI DOI 10.1021/CR3001884
[4]  
[Anonymous], 2016, NANO ENERGY, DOI DOI 10.1016/J.NANOEN.2016.02.049
[5]  
[Anonymous], 2012, NAT MATER, DOI DOI 10.1038/NMAT3191
[6]  
Bai S. Y., 2016, NAT ENERGY, V1, P16094
[7]  
BAO WZ, 2017, CHEM EUR J, V0023, P12613, DOI DOI 10.1002/CHEM.201702387
[8]  
CHA E, 2018, NAT NANOTECHNOL, V0013, P00337, DOI DOI 10.1038/S41565-018-0061-Y
[9]  
CUI ZM, 2016, ADV MATER, V0028, P06926, DOI DOI 10.1002/ADMA.201601382
[10]  
DU AB, 2017, ENERG ENVIRON SCI, V0010, P02616, DOI DOI 10.1039/C7EE02304A