Lagrangian submanifolds in complex projective space CPn

被引:0
作者
Jiao, Xiaoxiang [2 ]
Peng, Chiakuei [2 ]
Xu, Xiaowei [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Lagrangian submanifold; second fundamental form; Maurer-Cartan form; MINIMAL SUBMANIFOLDS; RIGIDITY; SPHERE;
D O I
10.1007/s11464-012-0244-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first prove a basic theorem with respect to the moving frame along a Lagrangian immersion into the complex projective space CPn. Applying this theorem, we study the rigidity problem of Lagrangian submanifolds in CPn.
引用
收藏
页码:1129 / 1140
页数:12
相关论文
共 50 条
  • [31] Classification of Lagrangian submanifolds in complex space forms satisfying a basic equality involving δ(2,2)
    Chen, Bang-Yen
    Prieto-Martin, Alicia
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (01) : 107 - 123
  • [32] Lagrangian H-umbilical submanifolds in complex space forms and pseudo-parallel cubic form
    Xu, Huiyang
    Li, Cece
    Xing, Cheng
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 209
  • [33] A note on the space of lagrangian submanifolds of a symplectic 4-manifold
    Swift, T
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 35 (2-3) : 183 - 192
  • [34] Certain submanifolds of complex space forms
    Mirjana Djorić
    Masafumi Okumura
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 111 - 126
  • [35] Certain submanifolds of complex space forms
    Djoric, Mirjana
    Okumura, Masafumi
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 111 - 126
  • [36] Stable Submanifolds in the Product of Projective Spaces
    Ramirez-Luna, Alejandra
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (09)
  • [37] Stable Submanifolds in the Product of Projective Spaces
    Alejandra Ramirez-Luna
    The Journal of Geometric Analysis, 2022, 32
  • [38] Classification of δ(2, n-2)-ideal Lagrangian submanifolds in n-dimensional complex space forms
    Chen, Bang-Yen
    Dillen, Franki
    Van der Veken, Joeri
    Vrancken, Luc
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) : 1456 - 1485
  • [39] Graded Lagrangian submanifolds
    Seidel, P
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (01): : 103 - 149
  • [40] Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations
    Tyurin, N. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2017, 72 (03) : 513 - 546