Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration

被引:30
作者
Chiu, Chi-Kai [2 ]
Ferreira, Joao [3 ]
Luo, Tzy-Jiun M. [2 ]
Geng, Haixia [3 ,4 ]
Lin, Feng-Chang [5 ]
Ko, Ching-Chang [1 ,3 ,6 ]
机构
[1] Univ N Carolina, Sch Dent, Dept Orthodont, Chapel Hill, NC 27599 USA
[2] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA
[3] Univ N Carolina, Sch Dent, Oral Biol Program, Chapel Hill, NC 27599 USA
[4] Jining Med Coll, Sch Dent, Jining, Peoples R China
[5] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[6] Univ N Carolina, Appl & Mat Sci Program, Chapel Hill, NC 27599 USA
关键词
CALCIUM-PHOSPHATE CEMENT; IN-VITRO; SILOXANE HYBRIDS; OSTEOBLAST RESPONSE; SODIUM-SILICATE; COMPOSITES; ADSORPTION; GELS; BEHAVIOR; TIO2;
D O I
10.1007/s10856-012-4691-6
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hydroxyapatite-gelatin modified siloxane (GEMOSIL) nanocomposite was developed by coating, kneading and hardening processes to provide formable scaffolding for alloplastic graft applications. The present study aims to characterize scaffolding formability and mechanical properties of GEMOSIL, and to test the in vitro and in vivo biocompatibility of GEMOSIL. Buffer Solution initiated formable paste followed by the sol-gel reaction led to a final hardened composite. Results showed the adequate coating of aminosilane, 11-19 wt%, affected the cohesiveness of the powders and the final compressive strength (69 MPa) of the composite. TGA and TEM results showed the effective aminosilane coating that preserves hydroxyapatite-gelatin nanocrystals from damage. Both GEMOSIL with and without titania increased the mineralization of preosteoblasts in vitro. Only did titania additives revealed good in vivo bone formation in rat calvarium defects. The scaffolding formability, due to cohesive bonding among GEMOSIL particles, could be further refined to fulfill the complicated scaffold processes.
引用
收藏
页码:2115 / 2126
页数:12
相关论文
共 55 条
  • [1] Processing methodologies for polycaprolactone-hydroxyapatite composites: A review
    Baji, A
    Wong, SC
    Srivatsan, TS
    Njus, GO
    Mathur, G
    [J]. MATERIALS AND MANUFACTURING PROCESSES, 2006, 21 (02) : 211 - 218
  • [2] BUCHOLZ RW, 1987, ORTHOP CLIN N AM, V18, P323
  • [3] Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration:: in vitro characterization and human osteoblast response
    Causa, F
    Netti, PA
    Ambrosio, L
    Ciapetti, G
    Baldini, N
    Pagani, S
    Martini, D
    Giunti, A
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 76A (01) : 151 - 162
  • [4] Modification of hydroxyapatite/gelatin composite by polyvinylalcohol
    Chang, MC
    Ko, CC
    Douglas, WH
    [J]. JOURNAL OF MATERIALS SCIENCE, 2005, 40 (9-10) : 2723 - 2727
  • [5] Preparation of hydroxyapatite-gelatin nanocomposite
    Chang, MC
    Ko, CC
    Douglas, WH
    [J]. BIOMATERIALS, 2003, 24 (17) : 2853 - 2862
  • [6] Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker
    Chang, Myung Chul
    Douglas, William H.
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2007, 18 (10) : 2045 - 2051
  • [7] Gelatine/silicate interactions: from nanoparticles to composite gels
    Coradin, T
    Bah, S
    Livage, J
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2004, 35 (01) : 53 - 58
  • [8] Interactions of bovine serum albumin and lysozyme with sodium silicate solutions
    Coradin, T
    Coupé, A
    Livage, J
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2003, 29 (2-3) : 189 - 196
  • [9] Interactions of amino-containing peptides with sodium silicate and colloidal silica: A biomimetic approach of silicification
    Coradin, T
    Durupthy, O
    Livage, J
    [J]. LANGMUIR, 2002, 18 (06) : 2331 - 2336
  • [10] Effect of some amino acids and peptides on silicic acid polymerization
    Coradin, T
    Livage, J
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2001, 21 (04) : 329 - 336