Modeling Single Event Transients in Advanced Devices and ICs

被引:69
作者
Artola, L. [1 ]
Gaillardin, M. [2 ]
Hubert, G. [1 ]
Raine, M. [2 ]
Paillet, P. [2 ]
机构
[1] French Aerosp Lab ONERA, F-31055 Toulouse, France
[2] DIF, CEA DAM, F-91297 Arpajon, France
关键词
Bulk; charge collection; circuit simulation; CMOS logic; finFET; modeling; Monte-Carlo simulation; parasitic amplification; simulation; single event transient (SET); SOI; TCAD; UTSOI; ENERGY ELECTROMAGNETIC MODELS; GEANT4 PHYSICS PROCESSES; 45 NM SOI; HEAVY-ION; CHARGE-COLLECTION; POTENTIAL MODULATION; SOFT ERRORS; DOUBLE-GATE; SIMULATION; BULK;
D O I
10.1109/TNS.2015.2432271
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ability for Single Event Transients (SETs) to induce soft errors in Integrated Circuits (ICs) was predicted for the first time by Wallmark and Marcus in the early 60's [1] and was confirmed to be a serious issue thirty years later. In the 90's microelectronic technologies reached the "deep submicron" era, allowing high density ICs working at frequencies faster than hundreds of MHz. This new paradigm changed the status of SETs to become a major source of reliability losses. Huge efforts have thus been made to characterize SETs in microelectronics, either using experiments or by simulation, in order to reveal key factors leading to SET occurrence, propagation and capture in modern ICs. In this context, modeling and simulation are of primary importance to get accurate SET predictions. This paper focuses on modeling SETs in innovative electronic devices which involves modeling steps at different scales, from ionizing particle to circuit response. After a brief review of the state-of-the art of modeling at each scale, this paper will discuss current capabilities and intrinsic limitations of SET modeling, the incoming challenges in advanced devices and ICs, and finally the methodologies to improve SET simulation and prediction for future technologies.
引用
收藏
页码:1528 / 1539
页数:12
相关论文
共 90 条
[1]   The Effect of Layout Topology on Single-Event Transient Pulse Quenching in a 65 nm Bulk CMOS Process [J].
Ahlbin, J. R. ;
Gadlage, M. J. ;
Ball, D. R. ;
Witulski, A. W. ;
Bhuva, B. L. ;
Reed, R. A. ;
Vizkelethy, G. ;
Massengill, L. W. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (06) :3380-3385
[2]   Single-Event Transient Pulse Quenching in Advanced CMOS Logic Circuits [J].
Ahlbin, Jonathan R. ;
Massengill, Lloyd W. ;
Bhuva, Bharat L. ;
Narasimham, Balaji ;
Gadlage, Matthew J. ;
Eaton, Paul H. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (06) :3050-3056
[3]   Monte Carlo calculations of electron transport in silicon and related effects for energies of 0.02-200 keV [J].
Akkerman, A. ;
Murat, M. ;
Barak, J. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (11)
[4]   Impact of Mobility Boosters (XsSOI, CESL, UN gate) on the Performance of ⟨100⟩ or ⟨110⟩ oriented FDSOI cMOSFFTs for the 32nm Node [J].
Andrieu, F. ;
Faynot, O. ;
Rochette, F. ;
Barbe, J.-C. ;
Buj, C. ;
Bogumilowicz, Y. ;
Allain, F. ;
Delaye, V. ;
Lafond, D. ;
Aussenac, F. ;
Feruglio, S. ;
Eymery, J. ;
Akatsu, T. ;
Maury, P. ;
Brevard, L. ;
Tosti, L. ;
Dansas, H. ;
Rouchouze, E. ;
Hartmann, J. -M. ;
Vandroux, L. ;
Casse, M. ;
Boeuf, F. ;
Fenouillet-Beranger, C. ;
Brunier, F. ;
Cayrefourcq, I. ;
Mazure, C. ;
Ghibaudo, G. ;
Deleonibus, S. .
2007 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2007, :50-51
[5]  
[Anonymous], P IEEE INT REL PHYS
[6]   Modeling of Elevated Temperatures Impact on Single Event Transient in Advanced CMOS Logics Beyond the 65-nm Technological Node [J].
Artola, L. ;
Hubert, G. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (04) :1611-1617
[7]   SEU Prediction From SET Modeling Using Multi-Node Collection in Bulk Transistors and SRAMs Down to the 65 nm Technology Node [J].
Artola, Laurent ;
Hubert, Guillaume ;
Warren, Kevin M. ;
Gaillardin, Marc ;
Schrimpf, Ronald D. ;
Reed, Robert A. ;
Weller, Robert A. ;
Ahlbin, Jonathan R. ;
Paillet, Philippe ;
Raine, Melanie ;
Girard, Sylvain ;
Duzellier, Sophie ;
Massengill, Lloyd W. ;
Bezerra, Francoise .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (03) :1338-1346
[8]   Collected Charge Analysis for a New Transient Model by TCAD Simulation in 90 nm Technology [J].
Artola, Laurent ;
Hubert, G. ;
Duzellier, S. ;
Bezerra, Francoise .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (04) :1869-1875
[9]   Layout Technique for Single-Event Transient Mitigation via Pulse Quenching [J].
Atkinson, Nicholas M. ;
Witulski, Arthur F. ;
Holman, W. Timothy ;
Ahlbin, Jonathan R. ;
Bhuva, Bharat L. ;
Massengill, Lloyd W. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (03) :885-890
[10]   Particle Monte Carlo modeling of single-event transient current and charge collection in integrated circuits [J].
Autran, J. L. ;
Glorieux, M. ;
Munteanu, D. ;
Clerc, S. ;
Gasiot, G. ;
Roche, P. .
MICROELECTRONICS RELIABILITY, 2014, 54 (9-10) :2278-2283