Modeling nanomaterial physical properties: theory and simulation

被引:15
作者
Bora, Tanujjal [1 ,2 ]
Dousse, Adrien [1 ,2 ]
Sharma, Kunal [1 ,2 ]
Sarma, Kaushik [3 ]
Baev, Alexander [4 ]
Hornyak, G. Louis [1 ,2 ]
Dasgupta, Guatam [5 ]
机构
[1] Asian Inst Technol, Sch Engn & Technol, Ind Syst Engn, Nanotechnol, Pathum Thani 12120, Thailand
[2] Asian Inst Technol, Ctr Excellence Nanotechnol, Pathum Thani, Thailand
[3] Asian Inst Technol, Sch Engn & Technol, Mechatron, Ind Syst Engn, Pathum Thani, Thailand
[4] State Univ New York SUNY Buffalo, Inst Lasers Photon & Biophoton, Buffalo, NY USA
[5] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
关键词
Nanomaterial; multiphysics; finite element; molecular dynamic; density functional theory; FINITE-ELEMENT-METHOD; ORGANIC SOLAR-CELLS; OPTICAL-PROPERTIES; ANTIREFLECTIVE PROPERTIES; 2ND-HARMONIC GENERATION; REFRACTIVE-INDEX; GOLD NANORODS; LIGHT; ABSORPTION; NANOPARTICLES;
D O I
10.1080/19475411.2018.1541935
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A brief theory and simulation overview for the purpose of design is presented with examples applies to modeling the physical properties, behavior, and phenomena of nanomaterial. This review paper constructs perspectives that consider coupling traditional domains of simulation by novel pathways to produce accurate representations of nanomaterial properties, behavior and phenomena. It is all about size scaling and how different approaches are able to simulate, integrate or simply pass the baton to the next level of complexity. In macroscopic world, the atomic or molecular information alone may not be directly useful. Nor is the bulk information useful in the microscopic world without intimate knowledge of molecular makeup. Therefore, when designing Nanomaterials, knowledge of properties spanning the complete range of size is the prerequisite of a recommended self-consistent approach. In fact, regarding applications in both industry and academia, the simulation first approach often can lead to great savings in time. This review paper focuses mostly on optical and electronic properties but a section is added that provides a segue into mechanical properties for future consideration.
引用
收藏
页码:116 / 143
页数:28
相关论文
共 126 条
[1]  
Agrawal M., 2010, 2010 35th IEEE Photovoltaic Specialists Conference (PVSC), P000301, DOI 10.1109/PVSC.2010.5615884
[2]   Plasmon-Enhanced Metasurfaces for Controlling Optical Polarization [J].
Alali, Fatema ;
Kim, Young Hwa ;
Baev, Alexander ;
Furlani, Edward P. .
ACS PHOTONICS, 2014, 1 (06) :507-515
[3]   The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities [J].
Andonegui, Imanol ;
Garcia-Adeva, Angel J. .
OPTICS EXPRESS, 2013, 21 (04) :4072-4092
[4]  
[Anonymous], 1999, CLASSICAL ELECTROMAG
[5]  
[Anonymous], 2003, Finite Element Methods for Maxwell's Equations
[6]   Metaphotonics: An emerging field with opportunities and challenges [J].
Baev, Alexander ;
Prasad, Paras N. ;
Agren, Hans ;
Samoc, Marek ;
Wegener, Martin .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2015, 594 :1-60
[7]   Laser nanotrapping and manipulation of nanoscale objects using subwavelength apertured plasmonic media [J].
Baev, Alexander ;
Furlani, Edward P. ;
Prasad, Paras N. ;
Grigorenko, Alexander N. ;
Roberts, Nicholas W. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (08)
[8]   Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics [J].
Barbry, M. ;
Koval, P. ;
Marchesin, F. ;
Esteban, R. ;
Borisov, A. G. ;
Aizpurua, J. ;
Sanchez-Portal, D. .
NANO LETTERS, 2015, 15 (05) :3410-3419
[9]   Tunable narrowband antireflection optical filter with a metasurface [J].
Bibbo, Luigi ;
Khan, Karim ;
Liu, Qiang ;
Lin, Mi ;
Wang, Qiong ;
Ouyang, Zhengbiao .
PHOTONICS RESEARCH, 2017, 5 (05) :500-506
[10]   OPTICAL SECOND-HARMONIC GENERATION IN REFLECTION FROM MEDIA WITH INVERSION SYMMETRY [J].
BLOEMBERGEN, N ;
CHANG, RK ;
JHA, SS ;
LEE, CH .
PHYSICAL REVIEW, 1968, 174 (03) :813-+