A generalized ridge regression estimator and its finite sample properties

被引:12
作者
Firinguetti, L [1 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Talca, Chile
关键词
collinearity; ridge regression; finite sample moments;
D O I
10.1080/03610929908832353
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new operational Generalized Ridge Regression (GRR) estimator is presented which is characterized by a new procedure to estimate the shrinkage parameters. Compared with the usual operational GRR estimator, the one proposed here enjoys the advantage that its shrinkage parameters are bounded. The finite sample properties of the resulting GRR estimator are derived in the context of the Classical Linear Regression Model with normally distributed disturbances.
引用
收藏
页码:1217 / 1229
页数:13
相关论文
共 7 条
[1]   EXPLICIT SOLUTION FOR GENERALIZED RIDGE REGRESSION [J].
HEMMERLE, WJ .
TECHNOMETRICS, 1975, 17 (03) :309-314
[2]   EXPLICIT AND CONSTRAINED GENERALIZED RIDGE ESTIMATION [J].
HEMMERLE, WJ ;
BRANTLE, TF .
TECHNOMETRICS, 1978, 20 (02) :109-120
[3]  
HEMMERLE WJ, 1978, COMMUNICATIONS STAT, V12, P239
[4]   CLASS OF BIASED ESTIMATORS IN LINEAR-REGRESSION [J].
HOCKING, RR ;
SPEED, FM ;
LYNN, MJ .
TECHNOMETRICS, 1976, 18 (04) :425-437
[5]   RIDGE REGRESSION - APPLICATIONS TO NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :69-&
[6]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[7]   RIDGE REGRESSION IN PRACTICE [J].
MARQUARDT, DW ;
SNEE, RD .
AMERICAN STATISTICIAN, 1975, 29 (01) :3-20