Scaling tape-recording areal densities to 100 Gb/in2

被引:25
作者
Argumedo, A. J. [1 ]
Berman, D. [2 ]
Biskeborn, R. G. [3 ]
Cherubini, G. [4 ]
Cideciyan, R. D. [4 ]
Eleftheriou, E. [4 ]
Haeberle, W. [4 ]
Hellman, D. J. [1 ]
Hutchins, R. [1 ]
Imaino, W. [2 ]
Jelitto, J. [4 ]
Judd, K. [5 ]
Jubert, P. -O. [2 ]
Lantz, M. A. [4 ]
McClelland, G. M.
Mittelholzer, T. [4 ]
Narayan, C. [2 ]
Oelcer, S. [4 ]
Seger, P. J. [5 ]
机构
[1] IBM Syst & Technol Grp, Tucson, AZ 85744 USA
[2] IBM Corp, Almaden Res Ctr, Div Res, San Jose, CA 95120 USA
[3] IBM Syst & Technol Grp, Almaden Res Ctr, San Jose, CA 95120 USA
[4] IBM Corp, Div Res, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland
[5] IBM Syst & Technol Grp, Tucson, AZ 85747 USA
关键词
D O I
10.1147/rd.524.0513
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We examine the issue of scaling magnetic tape-recording to higher areal densities, focusing on the challenges of achieving 100 Gb/in(2) in the linear tape format. The current highest achieved areal density demonstrations of 6.7 Gb/in(2) in the linear tape and 23.0 Gb/in(2) in the helical scan format provide a reference for this assessment. We argue that controlling the head-tape interaction is key to achieving high linear density, whereas track-following and reel-to-reel servomechanisms as well as transverse dimensional stability are key for achieving high track density. We envision that advancements in media, data-detection techniques, reel-to-reel control, and lateral motion control will enable much higher areal densities. An achievable goal is a linear density of 800 Kb/in and a track pitch of 0.2 mu m, resulting in an areal density of 100 Gb/in(2).
引用
收藏
页码:513 / 527
页数:15
相关论文
共 34 条
[1]  
[Anonymous], INT MAGN TAP STOR RO
[2]  
[Anonymous], P 17 ANN ASME INF ST
[3]   Timing-based track-following servo for linear tape systems [J].
Barrett, RC ;
Klaassen, EH ;
Albrecht, TR ;
Jaquette, GA ;
Eaton, JH .
IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (04) :1872-1877
[4]   6.7 Gb/in2 recording areal density on barium ferrite tape [J].
Berman, David ;
Biskeborn, Robert ;
Bui, N. ;
Childers, Ed ;
Cideciyan, R. D. ;
Dyer, W. ;
Eleftheriou, Evangelos ;
Hellman, Diana ;
Hutchins, R. ;
Imaino, Wayne ;
Jaquette, Glen ;
Jelitto, J. ;
Jubert, P.-O. ;
Lo, C. ;
McClelland, G. ;
Narayan, S. ;
Oelcer, S. ;
Topuria, T. ;
Harasawa, Takeshi ;
Hashimoto, Akihiro ;
Nagata, Takeshi ;
Ohtsu, Hiroki ;
Saito, Shinji .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (08) :3502-3508
[5]  
Bertram H., 1994, Theory of Magnetic Recording
[6]   SNR and density limit estimates: A comparison of longitudinal and perpendicular recording [J].
Bertram, HN ;
Williams, M .
IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (01) :4-9
[7]   Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction [J].
Bhushan, B .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (06) :2262-2296
[8]   Hard-disk-drive technology flat heads for linear tape recording [J].
Biskeborn, RG ;
Eaton, JH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2003, 47 (04) :385-400
[9]   Flat-profile tape recording head [J].
Biskeborn, RG ;
Eaton, JH .
IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) :1919-1921
[10]   High-rate modulation codes for reverse concatenation [J].
Blaum, Mario ;
Cideciyan, Roy D. ;
Eleftheriou, Evangelos ;
Galbraith, Rick ;
Lakovic, Ksenija ;
Mittelholzer, Thomas ;
Oenning, Travis ;
Wilson, Bruce .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (02) :740-743