Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment

被引:32
作者
Hernandez, Luis [1 ]
Baladron, Carlos [2 ]
Aguiar, Javier M. [2 ]
Calavia, Lorena [2 ]
Carro, Belen [2 ]
Sanchez-Esguevillas, Antonio [2 ]
Sanjuan, Javier [3 ]
Gonzalez, Alvaro [4 ]
Lloret, Jaime [5 ]
机构
[1] CIEMAT Res Ctr Energy Environm & Technol, Lubia 42290, Soria, Spain
[2] Univ Valladolid, ETSI Telecomunicac, E-47011 Valladolid, Spain
[3] Univ Zaragoza, Escuela Ingn & Arquitectura, Zaragoza 50018, Spain
[4] Univ Zaragoza, Zaragoza 50018, Spain
[5] Univ Politecn Valencia, Dept Comunicac, Valencia 46022, Spain
关键词
artificial neural network; short-term load forecasting; microgrid; multilayer perceptron; peak load forecasting; valley load forecasting; next day's total load; DEMAND;
D O I
10.3390/en6094489
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Short-Term Load Forecasting plays a significant role in energy generation planning, and is specially gaining momentum in the emerging Smart Grids environment, which usually presents highly disaggregated scenarios where detailed real-time information is available thanks to Communications and Information Technologies, as it happens for example in the case of microgrids. This paper presents a two stage prediction model based on an Artificial Neural Network in order to allow Short-Term Load Forecasting of the following day in microgrid environment, which first estimates peak and valley values of the demand curve of the day to be forecasted. Those, together with other variables, will make the second stage, forecast of the entire demand curve, more precise than a direct, single-stage forecast. The whole architecture of the model will be presented and the results compared with recent work on the same set of data, and on the same location, obtaining a Mean Absolute Percentage Error of 1.62% against the original 2.47% of the single stage model.
引用
收藏
页码:4489 / 4507
页数:19
相关论文
共 50 条
  • [41] Short-Term Load Forecasting: Similar Day-based Wavelet Neural Networks
    Chen, Ying
    Luh, Peter B.
    Rourke, Stephen J.
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 3353 - +
  • [42] Clustering based Short Term Load Forecasting using Artificial Neural Network
    Jain, Amit
    Satish, B.
    2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 1210 - 1216
  • [43] Short-Term Load Forecasting: Similar Day-Based Wavelet Neural Networks
    Chen, Ying
    Luh, Peter B.
    Guan, Che
    Zhao, Yige
    Michel, Laurent D.
    Coolbeth, Matthew A.
    Friedland, Peter B.
    Rourke, Stephen J.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (01) : 322 - 330
  • [44] Short-Term Load Forecasting Based on Improved TCN and DenseNet
    Liu, Mingping
    Qin, Hao
    Cao, Ran
    Deng, Suhui
    IEEE ACCESS, 2022, 10 : 115945 - 115957
  • [45] Short Term Load Forecasting Using Bootstrap Aggregating Based Ensemble Artificial Neural Network
    Tahir, Muhammad Faizan
    Chen Haoyong
    Mehmood, Kashif
    Larik, Noman Ali
    Khan, Asad
    Javed, Muhammad Sufyan
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2020, 13 (07) : 980 - 992
  • [46] Short-Term Load Forecasting Using Deep Neural Networks (DNN)
    Hossen, Tareq
    Plathottam, Siby Jose
    Angamuthu, Radha Krishnan
    Ranganathan, Prakash
    Salehfar, Hossein
    2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,
  • [48] Short-term load forecasting based on fuzzy neural network
    DONG Liang
    MU Zhichun (Information Engineering School
    International Journal of Minerals,Metallurgy and Materials, 1997, (03) : 46 - 48
  • [49] A novel decomposition-based ensemble model for short-term load forecasting using hybrid artificial neural networks
    Liao, Zhiyuan
    Huang, Jiehui
    Cheng, Yuxin
    Li, Chunquan
    Liu, Peter X.
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11043 - 11057
  • [50] Forecasting short-term electricity demand of Turkey by artificial neural networks
    Comert, Mustafa
    Yildiz, Ali
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP), 2018,