Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment

被引:31
作者
Hernandez, Luis [1 ]
Baladron, Carlos [2 ]
Aguiar, Javier M. [2 ]
Calavia, Lorena [2 ]
Carro, Belen [2 ]
Sanchez-Esguevillas, Antonio [2 ]
Sanjuan, Javier [3 ]
Gonzalez, Alvaro [4 ]
Lloret, Jaime [5 ]
机构
[1] CIEMAT Res Ctr Energy Environm & Technol, Lubia 42290, Soria, Spain
[2] Univ Valladolid, ETSI Telecomunicac, E-47011 Valladolid, Spain
[3] Univ Zaragoza, Escuela Ingn & Arquitectura, Zaragoza 50018, Spain
[4] Univ Zaragoza, Zaragoza 50018, Spain
[5] Univ Politecn Valencia, Dept Comunicac, Valencia 46022, Spain
关键词
artificial neural network; short-term load forecasting; microgrid; multilayer perceptron; peak load forecasting; valley load forecasting; next day's total load; DEMAND;
D O I
10.3390/en6094489
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Short-Term Load Forecasting plays a significant role in energy generation planning, and is specially gaining momentum in the emerging Smart Grids environment, which usually presents highly disaggregated scenarios where detailed real-time information is available thanks to Communications and Information Technologies, as it happens for example in the case of microgrids. This paper presents a two stage prediction model based on an Artificial Neural Network in order to allow Short-Term Load Forecasting of the following day in microgrid environment, which first estimates peak and valley values of the demand curve of the day to be forecasted. Those, together with other variables, will make the second stage, forecast of the entire demand curve, more precise than a direct, single-stage forecast. The whole architecture of the model will be presented and the results compared with recent work on the same set of data, and on the same location, obtaining a Mean Absolute Percentage Error of 1.62% against the original 2.47% of the single stage model.
引用
收藏
页码:4489 / 4507
页数:19
相关论文
共 20 条
[1]   Combined use of unsupervised and supervised learning for daily peak load forecasting [J].
Amin-Naseri, M. R. ;
Soroush, A. R. .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (06) :1302-1308
[2]  
Amral N., 2008, P 43 INT U POW ENG C, P1
[3]   Demand Dispatch [J].
Brooks, Alec ;
Lu, Ed ;
Reicher, Dan ;
Spirakis, Charles ;
Weihl, Bill .
IEEE POWER & ENERGY MAGAZINE, 2010, 8 (03) :20-29
[4]   Load/Price Forecasting and Managing Demand Response for Smart Grids [J].
Chan, S. C. ;
Tsui, K. M. ;
Wu, H. C. ;
Hou, Yunhe ;
Wu, Yik-Chung ;
Wu, Felix F. .
IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (05) :68-85
[5]  
Drezga I., 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), P3405, DOI 10.1109/IJCNN.1999.836210
[6]   Peak Load Forecasting of electric Utilities for West province of IRAN by using Neural Network without Weather information [J].
Ghomi, Mohammad ;
Goodarzi, Mahdi ;
Goodarzi, Mahmood .
2010 12TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2010, :28-32
[7]   Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks [J].
Hernandez, Luis ;
Baladron, Carlos ;
Aguiar, Javier M. ;
Calavia, Lorena ;
Carro, Belen ;
Sanchez-Esguevillas, Antonio ;
Garcia, Pablo ;
Lloret, Jaime .
ENERGIES, 2013, 6 (06) :2927-2948
[8]   Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks [J].
Hernandez, Luis ;
Baladron, Carlos ;
Aguiar, Javier M. ;
Carro, Belen ;
Sanchez-Esguevillas, Antonio J. ;
Lloret, Jaime .
ENERGIES, 2013, 6 (03) :1385-1408
[9]   A Multi-Agent System Architecture for Smart Grid Management and Forecasting of Energy Demand in Virtual Power Plants [J].
Hernandez, Luis ;
Baladron, Carlos ;
Aguiar, Javier M. ;
Carro, Belen ;
Sanchez-Esguevillas, Antonio ;
Lloret, Jaime ;
Chinarro, David ;
Gomez-Sanz, Jorge J. ;
Cook, Diane .
IEEE COMMUNICATIONS MAGAZINE, 2013, 51 (01) :106-113
[10]   Classification and Clustering of Electricity Demand Patterns in Industrial Parks [J].
Hernandez, Luis ;
Baladron, Carlos ;
Aguiar, Javier M. ;
Carro, Belen ;
Sanchez-Esguevillas, Antonio .
ENERGIES, 2012, 5 (12) :5215-5228