Sign-changing and multiple solutions of Kirchhoff type problems without the PS condition

被引:372
作者
Mao, Anmin [2 ]
Zhang, Zhitao [1 ]
机构
[1] Chinese Acad Sci, Inst Math, Beijing 100080, Peoples R China
[2] Qufu Normal Univ, Dept Math, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Critical points; Sign-changing solutions and multiple solutions; Kirchhoff type nonlocal problems; BOUNDARY-VALUE-PROBLEMS; SCHRODINGER-EQUATION; NONTRIVIAL SOLUTION; HAMILTONIAN SYSTEM; POSITIVE SOLUTIONS; INVARIANT-SETS; EXISTENCE; FLOW;
D O I
10.1016/j.na.2008.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of nontrivial solutions of Kirchhoff type equations is an important nonlocal quasilinear problem; in this paper we use minimax methods and invariant sets of descent flow to prove two interesting existence theorems for the following 4-superlinear Kirchhoff type problems without the P.S. condition, one concerning the existence of a nontrivial solution and the other one concerning the existence of sign-changing Solutions and multiple solutions, {-(a + b integral(Omega)\del u\(2))Delta u = f(x, u) in Omega, on partial derivative Omega. u = 0 (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1275 / 1287
页数:13
相关论文
共 31 条
[1]   EXISTENCE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE LINEAR PART [J].
ALAMA, S ;
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :89-115
[2]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[5]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[6]  
Bernstein S., 1940, Bull. Acad. Sci. URSS. Sr. Math. (Izvestia Akad. Nauk SSSR), V4, P17
[7]   EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION [J].
BUFFONI, B ;
JEANJEAN, L ;
STUART, CA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :179-186
[8]  
Cavalcanti MM., 2001, Adv. Differential Equations, V6, P701
[9]  
Cerami G., 1978, Ren. Acad. Sci. Lett. Ist. Lomb, V112, P332
[10]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627