Minimum harmonic indices of trees and unicyclic graphs with given number of pendant vertices and diameter

被引:0
作者
Zhu, Yan [1 ]
Chang, Renying [2 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] Linyi Univ, Dept Math, Linyi 276005, Shandong, Peoples R China
关键词
Harmonic index; tree; unicyclic graph; pendant vertice; diameter;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The harmonic index H(G) of a graph G is defined as the sum of weights 2/d(u)+d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we give sharp lower bounds for harmonic indices of trees and unicyclic graphs with n vertices and k pendant vertices, and characterize the corresponding extremal graphs. Furthermore, we also determine the smallest harmonic index of trees and unicyclic graphs with n vertices and diameter D(G).
引用
收藏
页码:365 / 374
页数:10
相关论文
共 50 条
  • [31] On the weighted reverse cover cost of trees and unicyclic graphs with given diameter
    Lv, Yan
    Chen, Zhouyang
    Wu, Tingzeng
    Zhang, Peng-Li
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 473
  • [32] On the Szeged index of unicyclic graphs with given diameter
    Liu, Yan
    Yu, Aimei
    Lu, Mei
    Hao, Rong-Xia
    DISCRETE APPLIED MATHEMATICS, 2017, 233 : 118 - 130
  • [33] Zagreb Indices of Trees, Unicyclic and Bicyclic Graphs With Given (Total) Domination
    Mojdeh, Doost Ali
    Habibi, Mohammad
    Badakhshian, Leila
    Rao, Yongsheng
    IEEE ACCESS, 2019, 7 : 94143 - 94149
  • [34] Unicyclic Graphs with Given Number of Cut Vertices and the Maximal Merrifield - Simmons Index
    Hua, Hongbo
    Xu, Xinli
    Wang, Hongzhuan
    FILOMAT, 2014, 28 (03) : 451 - 461
  • [35] The least eigenvalue of unicyclic graphs with n vertices and k pendant vertices
    Liu, Ruifang
    Zhai, Mingqing
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 657 - 665
  • [36] On Randic Indices of Trees, Unicyclic Graphs, and Bicyclic Graphs
    Du, Zhibin
    Zhou, Bo
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (12) : 2760 - 2770
  • [37] The Randic Indices of Trees, Unicyclic Graphs and Bicyclic Graphs
    Li, Jianxi
    Balachandran, S.
    Ayyaswamy, S. K.
    Venkatakrishnan, Y. B.
    ARS COMBINATORIA, 2016, 127 : 409 - 419
  • [38] On General Degree-Eccentricity Index for Trees with Fixed Diameter and Number of Pendant Vertices
    Masre, Mesfin
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 14 (01): : 19 - 32
  • [39] On the Revised Szeged Index of Unicyclic Graphs with Given Diameter
    Aimei Yu
    Kun Peng
    Rong-Xia Hao
    Jiahao Fu
    Yingsheng Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 651 - 672
  • [40] General Randic index of unicyclic graphs with given diameter
    Alfuraidan, Monther Rashed
    Das, Kinkar Chandra
    Vetrik, Tomas
    Balachandran, Selvaraj
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 7 - 16