Minimum harmonic indices of trees and unicyclic graphs with given number of pendant vertices and diameter

被引:0
|
作者
Zhu, Yan [1 ]
Chang, Renying [2 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] Linyi Univ, Dept Math, Linyi 276005, Shandong, Peoples R China
关键词
Harmonic index; tree; unicyclic graph; pendant vertice; diameter;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The harmonic index H(G) of a graph G is defined as the sum of weights 2/d(u)+d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we give sharp lower bounds for harmonic indices of trees and unicyclic graphs with n vertices and k pendant vertices, and characterize the corresponding extremal graphs. Furthermore, we also determine the smallest harmonic index of trees and unicyclic graphs with n vertices and diameter D(G).
引用
收藏
页码:365 / 374
页数:10
相关论文
共 50 条
  • [1] MINIMUM WIENER INDICES OF TREES AND UNICYCLIC GRAPHS OF GIVEN MATCHING NUMBER
    Du, Zhibin
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (01) : 101 - 112
  • [2] The Wiener index of unicyclic graphs given number of pendant vertices or cut vertices
    Shang-wang Tan
    Qi-long Wang
    Yan Lin
    Journal of Applied Mathematics and Computing, 2017, 55 : 1 - 24
  • [3] The Wiener index of unicyclic graphs given number of pendant vertices or cut vertices
    Tan, Shang-wang
    Wang, Qi-long
    Lin, Yan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) : 1 - 24
  • [4] THE MINIMUM HARMONIC INDEX FOR UNICYCLIC GRAPHS WITH GIVEN DIAMETER
    Zhong, Lingping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 429 - 442
  • [5] General Randic index of unicyclic graphs with given number of pendant vertices
    Vetrik, Tomas
    Balachandran, Selvaraj
    DISCRETE MATHEMATICS LETTERS, 2022, 8 : 83 - 88
  • [6] Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number
    Du, Zhibin
    Zhou, Bo
    Trinajstic, Nenad
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (02) : 842 - 855
  • [7] Laplacian coefficients of trees with given diameter and number of pendant vertices
    Tan, Shang-Wang
    Wang, Qi-Long
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2013, 37 (02): : 186 - 190
  • [8] Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number
    Zhibin Du
    Bo Zhou
    Nenad Trinajstić
    Journal of Mathematical Chemistry, 2010, 47 : 842 - 855
  • [9] The minimum Sombor index of trees with given number of pendant vertices
    Maitreyi, Venkatesan
    Elumalai, Suresh
    Balachandran, Selvaraj
    Liu, Hechao
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08):
  • [10] The minimum Sombor index of trees with given number of pendant vertices
    Venkatesan Maitreyi
    Suresh Elumalai
    Selvaraj Balachandran
    Hechao Liu
    Computational and Applied Mathematics, 2023, 42