Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies

被引:61
作者
Yang, Yang [1 ]
Culpitt, Tanner [1 ]
Hammes-Schiffer, Sharon [1 ]
机构
[1] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
COUPLED ELECTRON; APPROXIMATION; EIGENVALUES;
D O I
10.1021/acs.jpclett.8b00547
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF- and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.
引用
收藏
页码:1765 / +
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 2006, Time-Dependent Density Functional Theory
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries [J].
Brorsen, Kurt R. ;
Yang, Yang ;
Hammes-Schiffer, Sharon .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (15) :3488-3493
[4]   Multicomponent density-functional theory for time-dependent systems [J].
Butriy, O. ;
Ebadi, H. ;
de Boeij, P. L. ;
van Leeuwen, R. ;
Gross, E. K. U. .
PHYSICAL REVIEW A, 2007, 76 (05)
[5]   NON-BORN OPPENHEIMER DENSITY FUNCTIONAL THEORY OF MOLECULAR-SYSTEMS [J].
CAPITANI, JF ;
NALEWAJSKI, RF ;
PARR, RG .
JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (01) :568-573
[6]  
Casida M. E., 1996, THEORET COMPUT CHEM
[7]   Charge-transfer correction for improved time-dependent local density approximation excited-state potential energy curves:: Analysis within the two-level model with illustration for H2 and LiH [J].
Casida, ME ;
Gutierrez, F ;
Guan, JG ;
Gadea, FX ;
Salahub, D ;
Daudey, JP .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (17) :7062-7071
[8]   A dressed TDDFT treatment of the 2Ag states of butadiene and hexatriene [J].
Cave, RJ ;
Zhang, F ;
Maitra, NT ;
Burke, K .
CHEMICAL PHYSICS LETTERS, 2004, 389 (1-3) :39-42
[9]   Development of Electron-Proton Density Functionals for Multicomponent Density Functional Theory [J].
Chakraborty, Arindam ;
Pak, Michael V. ;
Hammes-Schiffer, Sharon .
PHYSICAL REVIEW LETTERS, 2008, 101 (15)
[10]   Multicomponent density functional theory embedding formulation [J].
Culpitt, Tanner ;
Brorsen, Kurt R. ;
Pak, Michael V. ;
Hammes-Schiffer, Sharon .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (04)