Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling: Iron and other dust-associated elements

被引:83
作者
Baker, A. R. [1 ]
Adams, C. [1 ]
Bell, T. G. [1 ]
Jickells, T. D. [1 ]
Ganzeveld, L. [2 ]
机构
[1] Univ E Anglia, Lab Global Marine & Atmospher Chem, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[2] Univ Wageningen & Res Ctr, Dept Environm Sci, Wageningen, Netherlands
基金
英国自然环境研究理事会;
关键词
atmospheric dust; iron; aluminum; manganese; Atlantic; wet and dry deposition; NORTH-ATLANTIC; WET DEPOSITION; SAHARAN DUST; MEDITERRANEAN-SEA; AEROSOL-PARTICLES; TROPICAL NORTH; TRACE-ELEMENTS; HEAVY-METALS; MAJOR IONS; TRANSPORT;
D O I
10.1002/gbc.20062
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric inputs of mineral dust supply iron and other trace metals to the remote ocean and can influence the marine carbon cycle due to iron's role as a potentially limiting micronutrient. Dust generation, transport, and deposition are highly heterogeneous, and there are very few remote marine locations where dust concentrations and chemistry (e.g., iron solubility) are routinely monitored. Here we use aerosol and rainwater samples collected during 10 large-scale research cruises to estimate the atmospheric input of iron, aluminum, and manganese to four broad regions of the Atlantic Ocean over two 3month periods for the years 2001-2005. We estimate total inputs of these metals to our study regions to be 4.2, 17, and 0.27Gmol in April-June and 4.9, 14, and 0.19Gmol in September-November, respectively. Inputs were highest in regions of high rainfall (the intertropical convergence zone and South Atlantic storm track), and rainfall contributed higher proportions of total input to wetter regions. By combining input estimates for total and soluble metals for these time periods, we calculated overall percentage solubilities for each metal that account for the contributions from both wet and dry depositions and the relative contributions from different aerosol types. Calculated solubilities were in the range 2.4%-9.1% for iron, 6.1%-15% for aluminum, and 54%-73% for manganese. We discuss sources of uncertainty in our estimates and compare our results to some recent estimates of atmospheric iron input to the Atlantic.
引用
收藏
页码:755 / 767
页数:13
相关论文
共 60 条
  • [21] Biomass burning as a source of dissolved iron to the open ocean? -: art. no. L19608
    Guieu, C
    Bonnet, S
    Wagener, T
    Loÿe-Pilot, MD
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (19) : 1 - 5
  • [22] Regional modelling of Saharan dust and biomass-burning smoke Part I: Model description and evaluation
    Heinold, Bernd
    Tegen, Ina
    Schepanski, Kerstin
    Tesche, Matthias
    Esselborn, Michael
    Freudenthaler, Volker
    Gross, Silke
    Kandler, Konrad
    Knippertz, Peter
    Mueller, Detlef
    Schladitz, Alexander
    Toledano, Carlos
    Weinzierl, Bernadett
    Ansmann, Albert
    Althausen, Dietrich
    Mueller, Thomas
    Petzold, Andreas
    Wiedensohler, Alfred
    [J]. TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2011, 63 (04): : 781 - 799
  • [23] WET DEPOSITION OF METALS TO THE TROPICAL NORTH AND THE SOUTH-ATLANTIC OCEAN
    HELMERS, E
    SCHREMS, O
    [J]. ATMOSPHERIC ENVIRONMENT, 1995, 29 (18) : 2475 - 2484
  • [24] Global dust model intercomparison in AeroCom phase I
    Huneeus, N.
    Schulz, M.
    Balkanski, Y.
    Griesfeller, J.
    Prospero, J.
    Kinne, S.
    Bauer, S.
    Boucher, O.
    Chin, M.
    Dentener, F.
    Diehl, T.
    Easter, R.
    Fillmore, D.
    Ghan, S.
    Ginoux, P.
    Grini, A.
    Horowitz, L.
    Koch, D.
    Krol, M. C.
    Landing, W.
    Liu, X.
    Mahowald, N.
    Miller, R.
    Morcrette, J. -J.
    Myhre, G.
    Penner, J.
    Perlwitz, J.
    Stier, P.
    Takemura, T.
    Zender, C. S.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (15) : 7781 - 7816
  • [25] ATMOSPHERIC INPUTS OF MANGANESE AND ALUMINUM TO THE SARGASSO SEA AND THEIR RELATION TO SURFACE-WATER CONCENTRATIONS
    JICKELLS, T
    CHURCH, T
    VERON, A
    ARIMOTO, R
    [J]. MARINE CHEMISTRY, 1994, 46 (03) : 283 - 292
  • [26] Global iron connections between desert dust, ocean biogeochemistry, and climate
    Jickells, TD
    An, ZS
    Andersen, KK
    Baker, AR
    Bergametti, G
    Brooks, N
    Cao, JJ
    Boyd, PW
    Duce, RA
    Hunter, KA
    Kawahata, H
    Kubilay, N
    laRoche, J
    Liss, PS
    Mahowald, N
    Prospero, JM
    Ridgwell, AJ
    Tegen, I
    Torres, R
    [J]. SCIENCE, 2005, 308 (5718) : 67 - 71
  • [27] Chemical composition of aerosols collected over the tropical North Atlantic Ocean
    Johansen, AM
    Siefert, RL
    Hoffmann, MR
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D12) : 15277 - 15312
  • [28] Modeling dust and soluble iron deposition to the South Atlantic Ocean
    Johnson, Matthew S.
    Meskhidze, Nicholas
    Solmon, Fabien
    Gasso, Santiago
    Chuang, Patrick Y.
    Gaiero, Diego M.
    Yantosca, Robert M.
    Wu, Shiliang
    Wang, Yuxuan
    Carouge, Claire
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [29] Temporal variability of rainwater iron speciation at the Bermuda Atlantic time series station
    Kieber, RJ
    Willey, JD
    Avery, GB
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2003, 108 (C8)
  • [30] Wet deposition of trace elements and radon daughter systematics in the South and equatorial Atlantic atmosphere
    Kim, G
    Church, TM
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (03)