NaCl Dissociation Dynamics at the Air-Water Interface

被引:14
|
作者
Wick, Collin D. [1 ]
机构
[1] Louisiana Tech Univ, Dept Chem, Ruston, LA 71270 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2009年 / 113卷 / 06期
关键词
LIQUID-VAPOR INTERFACE; MOLECULAR-DYNAMICS; LIQUID/LIQUID INTERFACES; RATE CONSTANTS; SIMULATION; SOLVATION; PICTURE; IONS;
D O I
10.1021/jp807901j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rate for NaCl dissociation was compared between the air-water interface and water bulk using the transition path sampling formulism to begin understanding how an interface affects reaction dynamics. The results showed that the dissociation dynamics at the interface was much slower than in the bulk. Free energy of dissociation calculations were carried out utilizing umbrella sampling for NaCl dissociation at the interface, and a higher barrier to dissociation was observed, which is consistent with the slower interfacial dissociation dynamics. Using the dissociation free energy profile at the interface, transition-state theory was used to predict a rate constant that was lower than the one calculated using transition path sampling. This led to the conclusion that it is difficult to capture the complex nature of interfacial reactions with mean free energy profiles. Analysis of transition states harvested from the simulations found that the NaCl vector was significantly less aligned to the normal of the air-water interface at the transition state than on average and that the Cl- ion had a high probability to be found at the Gibbs dividing surface at the transition state.
引用
收藏
页码:2497 / 2502
页数:6
相关论文
共 50 条
  • [41] Atmospheric Intermediates at the Air-Water Interface
    Enami, Shinichi
    Numadate, Naoki
    Hama, Tetsuya
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (28): : 5419 - 5434
  • [42] Bronsted basicity of the air-water interface
    Mishra, Himanshu
    Enami, Shinichi
    Nielsen, Robert J.
    Stewart, Logan A.
    Hoffmann, Michael R.
    Goddard, William A., III
    Colussi, Agustin J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (46) : 18679 - 18683
  • [43] Polymer Behavior at the Air-Water Interface
    Ligia Gargallo
    MRS Bulletin, 2010, 35 : 615 - 622
  • [44] Chiral recognition at the air-water interface
    Ariga, Katsuhiko
    Michinobu, Tsuyoshi
    Nakanishi, Takashi
    Hill, Jonathan P.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2008, 13 (1-2) : 23 - 30
  • [45] DNA hybridization at the air-water interface
    Ebara, Y
    Mizutani, K
    Okahata, Y
    LANGMUIR, 2000, 16 (06) : 2416 - 2418
  • [46] Crystallization of a polyphosphoester at the air-water interface
    Hasan, Nazmul
    Schwieger, Christian
    Tee, Hisaschi T.
    Wurm, Frederik R.
    Busse, Karsten
    Kressler, Joerg
    EUROPEAN POLYMER JOURNAL, 2018, 101 : 350 - 357
  • [47] Hydroxide anion at the air-water interface
    Mundy, Christopher J.
    Kuo, I-Feng W.
    Tuckerman, Mark E.
    Lee, Hee-Seung
    Tobias, Douglas J.
    CHEMICAL PHYSICS LETTERS, 2009, 481 (1-3) : 2 - 8
  • [48] POLYDIMETHYLSILOXANE MONOLAYERS AT AN AIR-WATER INTERFACE
    KAKIHARA, Y
    HIMMELBL.DM
    SCHECHTE.RS
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1969, 30 (02) : 200 - &
  • [49] MONOMOLECULAR FILMS AT AIR-WATER INTERFACE
    CADENHEA.DA
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1968, 60 (05): : 6 - &
  • [50] Molecular dynamics simulation of NaCl at the air/water interface with shell model
    Wang, Xiaowei
    Watanabe, Hideo
    Fuji, Masayoshi
    Takahashi, Minoru
    CHEMICAL PHYSICS LETTERS, 2008, 458 (1-3) : 235 - 238