Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety

被引:155
作者
Liu, Zhaoyang [1 ,2 ]
Lu, Yonglong [1 ,3 ]
Song, Xin [2 ,3 ]
Jones, Kevin [4 ]
Sweetman, Andrew J. [4 ,5 ]
Johnson, Andrew C. [5 ]
Zhang, Meng [1 ,3 ]
Lu, Xiaotian [1 ,3 ]
Su, Chao [1 ,3 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
[2] Chinese Acad Sci, Inst Soil Sci, Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Jiangsu, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
[5] Ctr Ecol & Hydrol, Maclean Bldg, Crowmarsh Gifford Wallin OX10 8BB, Oxon, England
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PFASs; Vegetables; Grains; Bioaccumulation; Human exposure; Health risk; PERFLUOROOCTANE SULFONATE PFOS; PERFLUORINATED ALKYL ACIDS; DIETARY EXPOSURE; POLYFLUOROALKYL SUBSTANCES; SOURCE IDENTIFICATION; COASTAL REGION; HEALTH-RISKS; EDIBLE CROPS; PFAAS; TRANSPORT;
D O I
10.1016/j.envint.2019.04.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Perfluoroalkyl substances (PFASs) have become a recognized concern due to their mobility, persistence, ubiquity and health hazards in the environment. In this study, ten types of vegetables and three types of grain crops were collected in two open-air fields with different distances (0.3 km, 10 km) from a mega fluorochemical industrial park (FIP), China. Bioaccumulation characteristics of PFASs in light of crop types and organs were explored, followed by analyzing human exposure and risks to local residents with different age groups and dietary habits. Elevated levels of Sigma PFASs were found nearby the FIP ranging from 79.9 ng/g to 200 ng/g in soils and from 58.8 ng/g to 8085 ng/g in crops. Perfluorooctanoic acid (PFOA) was the predominant PFAS component in soil; while shorter-chain perfluoroalkyl carboxylic acids (PFCAs), especially perfluorobutanoic acid (PFBA), were the major PFAS contaminants in multiple crops, resulting from their bioaccumulation preference. Depending on the crop types, the bioaccumulation factors (BAFs) of Sigma PFASs for edible parts varied from 0.36 to 48.0, and the highest values were found in shoot vegetables compared with those in fruit vegetables, flower vegetables, root vegetables and grain crops. For typical grains, the BAFs of Sigma PFASs decreased in the order of soybean (Glycine max (Linn.) Merr.), wheat (Triticum aestivum L.) and corn (Zea mays L.), possibly related to their protein and lipid content. Among specific organs in the whole plants, leaves exhibited the highest BAFs of Sigma PFASs compared with corresponding roots, stems, husks or grains. With increasing carbon chain lengths of individual PFCAs (C4-C8), the logarithm of their BAFs for edible parts of various crops showed a linear decrease (0.1-1.16 log decrease per CF2 unit), and the largest decrease was observed in grains. Human exposure to PFOA via the consumption of contaminated crops represents a health risk for local residents, especially for low-age consumers or urban consumers with higher vegetable diet. Implications for planting optimization and food safety were provided aiming to reduce health hazards of PFASs.
引用
收藏
页码:671 / 684
页数:14
相关论文
共 87 条
[1]  
Amundsen C., 2008, TA2444 SFT
[2]  
[Anonymous], 2005, ENV ORGANIC CHEM
[3]   Perfluorinated Compounds in the Environment and the Blood of Residents Living near Fluorochemical Plants in Fuxin, China [J].
Bao, Jia ;
Liu, Wei ;
Liu, Li ;
Jin, Yihe ;
Dai, Jiayin ;
Ran, Xiaorong ;
Zhang, Zhixu ;
Tsuda, Shuji .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (19) :8075-8080
[4]  
BfR (Bundesinstitut fur Risikobewertung German Federal Institut for Risk Assessment), 2006, HIGH LEV PERFL ORG S
[5]   STRONG ASSOCIATIONS OF SHORT-CHAIN PERFLUOROALKYL ACIDS WITH SERUM ALBUMIN AND INVESTIGATION OF BINDING MECHANISMS [J].
Bischel, Heather N. ;
MacManus-Spencer, Laura A. ;
Zhang, Chaojie ;
Luthy, Richard G. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2011, 30 (11) :2423-2430
[6]   Perfluoroalkyl Acid Uptake in Lettuce (Lactuca sativa) and Strawberry (Fragaria ananassa) Irrigated with Reclaimed Water [J].
Blaine, Andrea C. ;
Rich, Courtney D. ;
Sedlacko, Erin M. ;
Hyland, Katherine C. ;
Stushnoff, Cecil ;
Dickenson, Eric R. V. ;
Higgins, Christopher P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (24) :14361-14368
[7]   Perfluoroalkyl Acid Distribution in Various Plant Compartments of Edible Crops Grown in Biosolids-Amended soils [J].
Blaine, Andrea C. ;
Rich, Courtney D. ;
Sedlacko, Erin M. ;
Hundal, Lakhwinder S. ;
Kumar, Kuldip ;
Lau, Christopher ;
Mills, Marc A. ;
Harris, Kimberly M. ;
Higgins, Christopher P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (14) :7858-7865
[8]   Uptake of Perfluoroalkyl Acids into Edible Crops via Land Applied Biosolids: Field and Greenhouse Studies [J].
Blaine, Andrea C. ;
Rich, Courtney D. ;
Hundal, Lakhwinder S. ;
Lau, Christopher ;
Mills, Marc A. ;
Harris, Kimberly M. ;
Higgins, Christopher P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (24) :14062-14069
[9]  
Bureau of Statistics of Shandong Province C, 2015, SHANDONG STAT YB
[10]   Multimedia Distribution and Transfer of Per- and Polyfluoroalkyl Substances (PFASs) Surrounding Two Fluorochemical Manufacturing Facilities in Fuxin, China [J].
Chen, Hao ;
Yao, Yiming ;
Zhao, Zhen ;
Wang, Yu ;
Wang, Qj ;
Ren, Chao ;
Wang, Bin ;
Sun, Hongwen ;
Alder, Alfredo C. ;
Kannan, Kurunthachalam .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (15) :8263-8271