Carrier Motion Effect on Bilayer Graphene Nanoribbon Base Biosensor Model

被引:7
作者
Kiani, Mohammad Javad [1 ,2 ]
Harun, F. K. Che [1 ]
Hedayat, S. N. [4 ]
Akbari, E. [3 ]
Mousavi, S. M. [1 ]
Ahmadi, M. T. [1 ,4 ]
机构
[1] Univ Teknol Malaysia, Fac Elect Engn, Skudai 81310, Johor, Malaysia
[2] Islamic Azad Univ, Yasooj Branch, Dept Elect Engn, Yasuj 7591483587, Iran
[3] Univ Teknol Malaysia, Ctr Artificial Intelligence & Robot CAIRO, Skudai 81310, Johor, Malaysia
[4] Urmia Univ, Dept Elect Engn, Orumiyeh 5181857561, Iran
关键词
Bi Layer Graphene Nanoribbon (BGNR); Prostate Specific Antigen (PSA); Carrier Concentration; Biosensor; ENERGY;
D O I
10.1166/jctn.2013.2852
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene nanoribbon (GNR) because of its unique electrical properties has been employed in many applications, such as batteries, energy storage devices and biosensors. In this paper modelling of bilayer graphene nanoribbon (BGNR) sensor is in our focus. Based on the presented model BGNR quantum capacitance variation effect by the PSA injected electrons in to the FET channel as a sensing mechanism is considered. Also carrier movement in BGNR as another modelling parameter is suggested. In this paper prostate specific antigen (PSA) adsorption and local pH value by injected carriers on the surface of bilayer BGNR is modelled. Carrier concentration as a function of control parameters (f, p) is predicted. Finally comparison study are illustrated which indicates good agreement between proposed model and experimental data. We are concluded that the current variation on the biosensor is controlled by PSA concentration and local pH values.
引用
收藏
页码:1338 / 1342
页数:5
相关论文
共 26 条
[1]   Carbon nanostructures fullerenes and carbon nanotubes [J].
Ahmad, S .
IETE TECHNICAL REVIEW, 1999, 16 (3-4) :297-310
[2]  
Ahmadi MT, 2009, AIP CONF PROC, V1136, P98, DOI 10.1063/1.3160278
[3]  
Akturk A, 2008, J COMPUT THEOR NANOS, V5, P1138
[4]   Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications [J].
An, Xiaohong ;
Simmons, Trevor John ;
Shah, Rakesh ;
Wolfe, Christopher ;
Lewis, Kim M. ;
Washington, Morris ;
Nayak, Saroj K. ;
Talapatra, Saikat ;
Kar, Swastik .
NANO LETTERS, 2010, 10 (11) :4295-4301
[5]   Structures and interaction energies of stacked graphene-nucleobase complexes [J].
Antony, Jens ;
Grimme, Stefan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (19) :2722-2729
[6]  
Appenzeller J, 2009, 2009 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P124
[7]   Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device [J].
Banerjee, Sanjay K. ;
Register, Leonard F. ;
Tutuc, Emanuel ;
Reddy, Dharmendar ;
MacDonald, Allan H. .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (02) :158-160
[8]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[9]   Graphene electrochemistry: Fabricating amperometric biosensors [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
ANALYST, 2011, 136 (10) :2084-2089
[10]   Butterfly-Shaped Conjugated Oligoelectrolyte/Graphene Oxide Integrated Assay for Light-Up Visual Detection of Heparin [J].
Cai, Liping ;
Zhan, Ruoyu ;
Pu, Kan-Yi ;
Qi, Xiaoying ;
Zhang, Hua ;
Huang, Wei ;
Liu, Bin .
ANALYTICAL CHEMISTRY, 2011, 83 (20) :7849-7855