Fundamentals and Applications of Photo-Cross-Linking in Bioprinting

被引:267
作者
Lim, Khoon S. [2 ,3 ]
Galarraga, Jonathan H. [1 ]
Cui, Xiaolin [2 ,3 ]
Lindberg, Gabriella C. J. [2 ,3 ]
Burdick, Jason A. [1 ]
Woodfield, Tim B. F. [2 ,3 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Otago, Ctr Bioengn & Nanomed, Dept Orthopaed Surg & Musculoskeletal Med, Christchurch Regenerat Med & Tissue Engn CReaTE G, Christchurch 8011, New Zealand
[3] Med Technol Ctr Res Excellence MedTech CoRE, Auckland 1010, New Zealand
基金
美国国家科学基金会;
关键词
FREE-RADICAL POLYMERIZATION; EVALUATED RATE COEFFICIENTS; PROPAGATION RATE COEFFICIENTS; DOUBLE-NETWORK HYDROGELS; DECELLULARIZED EXTRACELLULAR-MATRIX; HYALURONIC-ACID HYDROGELS; IN-VITRO; MECHANICAL-PROPERTIES; STEM-CELLS; PHOTOPOLYMERIZABLE HYDROGELS;
D O I
10.1021/acs.chemrev.9b00812
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This review provides a detailed overview of the rapidly advancing field of biofabrication, particularly with regards to the use of photo-cross-linking (i.e., light-based) techniques. The major emphasis of this review is on the fundamentals of photo-cross-linking and key criteria identified for the successful design and implementation of photo-cross-linked bioinks and bioresins in extrusion-based and lithography-based bioprinting. The general mechanisms associated with photo-cross-linking (e.g., free-radical chain polymerization, thiol-ene, photomediated redox) of natural and synthetic materials are described to inform bioink and bioresin design, which includes the selection of polymers, functional group modifications, photoinitiators, and light sources that enable facile and cytocompatible photo-cross-linking. Depending on material selection and the bioprinting technique of interest, we describe the specific bioink or bioresin properties and criteria that must be achieved to ensure optimal printability and utility. Finally, examples of current state-of-the-art applications of light-based bioprinting for in vitro tissue models, tissue engineering, and regenerative medicine are provided to further motivate future opportunities within the bioprinting landscape that are facilitated with light.
引用
收藏
页码:10637 / 10669
页数:33
相关论文
共 264 条
  • [1] A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications
    Abbadessa, A.
    Blokzijl, M. M.
    Mouser, V. H. M.
    Marica, P.
    Malda, J.
    Hennink, W. E.
    Vermonden, T.
    [J]. CARBOHYDRATE POLYMERS, 2016, 149 : 163 - 174
  • [2] A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides
    Abbadessa, Anna
    Mouser, Vivian H. M.
    Blokzijl, Maarten M.
    Gawlitta, Debby
    Dhert, Wouter J. A.
    Hennink, Wim E.
    Malda, Jos
    Vermonden, Tina
    [J]. BIOMACROMOLECULES, 2016, 17 (06) : 2137 - 2147
  • [3] Aguado BA, 2012, TISSUE ENG PT A, V18, P806, DOI [10.1089/ten.tea.2011.0391, 10.1089/ten.TEA.2011.0391]
  • [4] Development of a clay based bioink for 3D cell printing for skeletal application
    Ahlfeld, T.
    Cidonio, G.
    Kilian, D.
    Duin, S.
    Akkineni, A. R.
    Dawson, J. I.
    Yang, S.
    Lode, A.
    Oreffo, R. O. C.
    Gelinsky, M.
    [J]. BIOFABRICATION, 2017, 9 (03)
  • [5] 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments
    Albritton, Jacob L.
    Miller, Jordan S.
    [J]. DISEASE MODELS & MECHANISMS, 2017, 10 (01) : 3 - 14
  • [6] Alcala-Orozco Cesar R., 2020, Bioprinting, V18, pe00073, DOI 10.1016/j.bprint.2019.e00073
  • [7] Amini Ami R., 2012, Critical Reviews in Biomedical Engineering, V40, P363
  • [8] Photopolymerization kinetics of multifunctional monomers
    Andrzejewska, E
    [J]. PROGRESS IN POLYMER SCIENCE, 2001, 26 (04) : 605 - 665
  • [9] Annabi N, 2010, TISSUE ENG PART B-RE, V16, P371, DOI 10.1089/ten.TEB.2009.0639
  • [10] [Anonymous], 2015, BIOFABRICATION