Thermal conductivity in spherical nanocolloids

被引:5
作者
Koushki, E. [1 ,2 ]
Ara, M. H. Majles [1 ]
Doost, H. Akherat [1 ]
机构
[1] Kharazmi Univ, Dept Phys, Photon Lab, Tehran, Iran
[2] Hakim Sabzevari Univ, Dept Phys, Sabzevar, Iran
关键词
Thermal conductivity; Nanocolloid; Brownian motion; Statistical mechanics; Legender series; KINETIC-THEORY; MOTION; LIQUIDS; SYSTEM;
D O I
10.1016/j.ijthermalsci.2013.03.002
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the present work, a proper description of Brownian motion of nanoparticles is offered and the mean velocity in a preferred direction and the mean free path of the nanoparticles are evaluated statistically. Based on this study, a proper model for thermal conductivity of nanocolloids is obtained. This modified model considers two main mechanisms that contribute in thermal conductivity; thermal carriers inside the particles and the Brownian motion of the particles. New models for both the mechanisms are proposed that have some virtues in comparison with the previous models. Evaluations show that in the thermal conductivity, the portion of Brownian motion is negligible in comparison with the other one. This model has been tested by silver nanoparticles dispersed in water. Using this model, simulation of the energy flux and the temperature distribution is offered. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:14 / 20
页数:7
相关论文
共 38 条
[1]  
[Anonymous], 1996, Statistical mechanics
[2]  
[Anonymous], 2009, Classical Electrodynamics
[3]   Data analysis of -scan experiment using Fresnel-Kirchoff integral method in colloidal TiO2 nanoparticles [J].
Ara, M. H. Majles ;
Koushki, E. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 107 (02) :429-434
[4]   Non-linear optical properties of silver nanoparticles prepared by hydrogen reduction method [J].
Ara, M. H. Majles ;
Dehghani, Z. ;
Sahraei, R. ;
Nabiyouni, G. .
OPTICS COMMUNICATIONS, 2010, 283 (08) :1650-1653
[5]   TEMPERATURE SENSOR CHARACTERISTICS AND MEASUREMENT SYSTEM-DESIGN [J].
BENTLEY, JP .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1984, 17 (06) :430-439
[6]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[7]  
Carslaw H.S., 1986, Conduction of Heat In Solids, V2nde
[8]   Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids [J].
Duangthongsuk, Weerapun ;
Wongwises, Somchai .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2009, 33 (04) :706-714
[9]  
Einstein A, 1906, ANN PHYS-BERLIN, V19, P371