A Comparison of Imputation Strategies for Ordinal Missing Data on Likert Scale Variables

被引:65
作者
Wu, Wei [1 ]
Jia, Fan [1 ]
Enders, Craig [2 ]
机构
[1] Univ Kansas, Lawrence, KS 66044 USA
[2] Arizona State Univ, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
missing data; multiple imputation; ordinal data; MULTIPLE IMPUTATION; COEFFICIENTS; ALPHA;
D O I
10.1080/00273171.2015.1022644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article compares a variety of imputation strategies for ordinal missing data on Likert scale variables (number of categories = 2, 3, 5, or 7) in recovering reliability coefficients, mean scale scores, and regression coefficients of predicting one scale score from another. The examined strategies include imputing using normal data models with naive rounding/without rounding, using latent variable models, and using categorical data models such as discriminant analysis and binary logistic regression (for dichotomous data only), multinomial and proportional odds logistic regression (for polytomous data only). The result suggests that both the normal model approach without rounding and the latent variable model approach perform well for either dichotomous or polytomous data regardless of sample size, missing data proportion, and asymmetry of item distributions. The discriminant analysis approach also performs well for dichotomous data. Naively rounding normal imputations or using logistic regression models to impute ordinal data are not recommended as they can potentially lead to substantial bias in all or some of the parameters.
引用
收藏
页码:484 / 503
页数:20
相关论文
共 45 条
[1]  
Agresti A., 2007, An introduction to categorical data analysis, V2nd ed., DOI DOI 10.1002/0470114754
[2]  
Allison P. D., 2002, MISSING DATA, DOI [10.4135/9780857020994.n4, DOI 10.4135/9780857020994.N4]
[3]  
[Anonymous], 2010, Journal of Data Science, DOI DOI 10.6339/JDS.2010.08(3).612
[4]  
Asparouhov T., 2010, MULTIPLE IMPUTATION
[5]  
Asparouhov T., 2010, BAYESIAN ANAL USING
[6]   Robustness of a multivariate normal approximation for imputation of incomplete binary data [J].
Bernaards, Coen A. ;
Belin, Thomas R. ;
Schafer, Joseph L. .
STATISTICS IN MEDICINE, 2007, 26 (06) :1368-1382
[7]   A comparison of inclusive and restrictive strategies in modern missing data procedures [J].
Collins, LM ;
Schafer, JL ;
Kam, CM .
PSYCHOLOGICAL METHODS, 2001, 6 (04) :330-351
[8]   Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models [J].
Cowles, MK .
STATISTICS AND COMPUTING, 1996, 6 (02) :101-111
[9]   A distance-based rounding strategy for post-imputation ordinal data [J].
Demirtas, Hakan .
JOURNAL OF APPLIED STATISTICS, 2010, 37 (03) :489-500
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38