Parametric regression analysis of imprecise and uncertain data in the fuzzy belief function framework

被引:21
作者
Su, Zhi-gang [1 ]
Wang, Yi-fan [2 ]
Wang, Pei-hong [1 ]
机构
[1] Southeast Univ, Key Lab Energy Thermal Convers & Control, Minist Educ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
[2] Carnegie Mellon Univ, Informat Networking Inst, Pittsburgh, PA 15217 USA
基金
中国国家自然科学基金;
关键词
Evidence theory; Fuzzy belief function; Uncertain data; Fuzzy data; EM algorithm; Regression analysis; MAXIMUM-LIKELIHOOD; PROBABILITIES;
D O I
10.1016/j.ijar.2013.02.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, parametric regression analyses including both linear and nonlinear regressions are investigated in the case of imprecise and uncertain data, represented by a fuzzy belief function. The parameters in both the linear and nonlinear regression models are estimated using the fuzzy evidential EM algorithm, a straightforward fuzzy version of the evidential EM algorithm. The nonlinear regression model is derived by introducing a kernel function into the proposed linear regression model. An unreliable sensor experiment is designed to evaluate the performance of the proposed linear and nonlinear parametric regression methods, called parametric evidential regression (PEVREG) models. The experimental results demonstrate the high prediction accuracy of the PEVREG models in regressions with crisp inputs and a fuzzy belief function as output. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1217 / 1242
页数:26
相关论文
共 41 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
[Anonymous], 2004, Introduction to Machine Learning
[3]  
[Anonymous], 2004, KERNEL METHODS PATTE
[4]  
[Anonymous], 1988, Possibility Theory
[5]  
[Anonymous], 1997, IEEE T AUTOM CONTROL, DOI DOI 10.1109/TAC.1997.633847
[6]   Multiple regression with fuzzy data [J].
Bargiela, Andrzej ;
Pedrycz, Witold ;
Nakashima, Tomoharu .
FUZZY SETS AND SYSTEMS, 2007, 158 (19) :2169-2188
[7]   Belief function independence: I. The marginal case [J].
Ben Yaghlane, B ;
Smets, P ;
Mellouli, K .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2002, 29 (01) :47-70
[8]  
Cattaneo Marco E. G. V., 2011, INT J APPROX REASON, V52, P299
[9]  
Chebbah M, 2012, ADV INTEL SOFT COMPU, V164, P239
[10]   Independence concepts in evidence theory [J].
Couso, Ines ;
Moral, Serafin .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2010, 51 (07) :748-758