State estimation and Nonlinear Model Predictive Control of end-use properties in batch reactors

被引:0
作者
Valappil, J [1 ]
Georgakis, C [1 ]
机构
[1] Lehigh Univ, Chem Proc Modeling & Control Res Ctr, Bethlehem, PA 18015 USA
来源
PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6 | 2001年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There are economic incentives in controlling the end-use properties in batch reactors to reduce the variability in the final product quality specifications. Here we define an approach fur controlling the properties within a desired target region, instead of a set point, with an economic objective and with consideration of the model uncertainty. The approach to handling process-model mismatch Is based on determining the uncertainty in the predicted final values of the properties, in the form of elliptical confidence regions. The controller then ensures that the complete confidence region is within the target region. A semi-infinite programming problem is solved to find the input values for the rest of the batch. The methods developed here are demonstrated on an emulsion polymerization example.
引用
收藏
页码:999 / 1004
页数:6
相关论文
共 8 条
  • [1] An algorithm for constrained nonlinear optimization under uncertainty
    Darlington, J
    Pantelides, CC
    Rustem, B
    Tanyi, BA
    [J]. AUTOMATICA, 1999, 35 (02) : 217 - 228
  • [2] SEMIINFINITE PROGRAMMING - THEORY, METHODS, AND APPLICATIONS
    HETTICH, R
    KORTANEK, KO
    [J]. SIAM REVIEW, 1993, 35 (03) : 380 - 429
  • [3] LIOTTA V, 1996, THESIS LEHIGH U BETH
  • [4] MAYNE DQ, 1979, J OPTIMIZATION THEOR, V28
  • [5] SOME OUTER APPROXIMATION METHODS FOR SEMIINFINITE OPTIMIZATION PROBLEMS
    REEMTSEN, R
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 53 (01) : 87 - 108
  • [6] Systematic estimation of state noise statistics for extended Kalman filters
    Valappil, J
    Georgakis, C
    [J]. AICHE JOURNAL, 2000, 46 (02) : 292 - 308
  • [7] VALAPPIL J, 2000, UNPUB NONLINEAR MODE
  • [8] VALAPPIL J, 2001, THESIS LEHIGH U BETH