Six nostoclide analogues were synthesised from 3-benzyl-2(5H)-furanone in one step, with yields ranging from 10 to 71%, and subjected to several biological assays. The two most active of these, 5d and 5e, were shown to be phytogrowth inhibitors of the radicle of Lolium multiflorum Lam, while enhancing the root growth of Physalis ixocarpa Brot. Both compounds inhibited electron flow (basal, phosphorylating and uncoupled) from water to methylviologen (MV); both acted as Hill reaction inhibitors, since the synthesis of ATP was prevented. The uncoupled electron transport from photosystem II (PSII) (water to 2,6-dichlorophenol-indophenol (DPIP)) and photosystem I (PSI) (2,6-dichlorophenol-indophenol reduced (DPIPred) to MV) was inhibited with 500 gm of 5d by 22 and 14% respectively. In addition, 400 pm of 5d inhibited PSI (from tetramethyl-p-benzohydroquinone (TMQH(2)) to MV) by 40%. Thus 5d inhibited electron transport at the b(6)f complex. Finally, 500 gm of Se inhibited electron flow (basal and phosphorylating) by 25%, and 300 mu M of 5e enhanced light-activated membrane-bound Mg2+-ATPase by 66%. Thus 5e behaved as a weak Hill reaction inhibitor and an uncoupler. In general, the phytotoxicity of the synthetic lactones was only weakly related to inhibition of photosynthesis. (c) 2006 Society of Chemical Industry