Ground state and multiple solutions for the fractional Schrodinger-Poisson system with critical Sobolev exponent

被引:21
作者
Luo, Huxiao [1 ]
Tang, Xianhua [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger-Poisson system; Penalization scheme; Ljusternik-Schnirelmann category; NEHARI-MANIFOLD METHOD; POSITIVE SOLUTIONS; SEMICLASSICAL SOLUTIONS; ELLIPTIC PROBLEMS;
D O I
10.1016/j.nonrwa.2017.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following doubly singularly perturbed fractional Schrodinger Poisson system with critical Sobolev exponent {epsilon(2 alpha)(-Delta)(alpha)u + V (x)u + phi u = vertical bar u vertical bar(2)(-2)(alpha*) u + f(u) in R-N, epsilon(theta)(-Delta)(s/2) phi = gamma(s)u(2) R-N, where alpha is an element of (1/2, 1), N is an element of (2 alpha 4 alpha), s is an element of (N - 2 alpha, N), theta is an element of (0, s), f is a subcritical nonlinearity, epsilon is a small parameter, the positive potential V satisfies a local condition. By combining penalization techniques with Ljusternik-Schnirelmann theory, the number of positive solutions is estimated below by the topology of the set where the potential V attains its minimum. (C) 2017 Elsevier Ltd. All rights reserved
引用
收藏
页码:24 / 52
页数:29
相关论文
共 43 条
[1]   Multiple Solutions for a Nonlinear Schrodinger Equation with Magnetic Fields [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (09) :1565-1586
[2]  
Alves CO, 2005, ADV NONLINEAR STUD, V5, P551
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[5]  
[Anonymous], 1997, Minimax theorems
[6]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[7]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48
[8]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[9]   Solitons in Schrodinger-Maxwell equations [J].
Benci, Vieri ;
Fortunato, Donato .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2014, 15 (01) :101-132
[10]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71