Local bifurcations of nonlinear viscoelastic panel in supersonic flow

被引:8
|
作者
Zhang, Xiaohua [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Mech, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Viscoelastic panel; Supersonic flow; Stability; Bifurcation; Normal form; NORMAL FORMS; PERTURBATION TECHNIQUE; SYMBOLIC COMPUTATION; VIBRATION ANALYSIS; AID;
D O I
10.1016/j.cnsns.2012.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stability and bifurcation behaviors of a two-dimensional nonlinear viscoelastic panel in supersonic flow are investigated with analytical and numerical methods. One type of critical points for the bifurcation response equations is considered, which is characterized by a pair of purely imaginary eigenvalues and a pair of complex conjugate eigenvalues having negative real part. With the aid of computer language Maple and the normal form theory, Hopf bifurcation solution of the model is investigated. Finally, numerical simulations are shown, which agree with the theoretical analytical results. (C) 2012 Elsevier B. V. All rights reserved.
引用
收藏
页码:1931 / 1938
页数:8
相关论文
共 50 条
  • [31] Bifurcations and stability analysis for nonlinear oscillations of an airfoil
    Zhang, Li
    Chen, Fangqi
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 220 - 231
  • [32] Local and global bifurcations in an SIRS epidemic model
    Song, Zigen
    Xu, Jian
    Li, Qunhong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (02) : 534 - 547
  • [33] Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation
    A. N. Kulikov
    D. A. Kulikov
    Automation and Remote Control, 2017, 78 : 1955 - 1966
  • [34] Nonlinear thermal flutter characteristics of thermoplastic composite panels in supersonic flow
    Gao Y.
    Duan J.
    Lei Y.
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2022, 44 (02): : 16 - 23
  • [35] Instabilities, Bifurcations, and Nonlinear Dynamics in Two-Dimensional Generalizations of Kolmogorov Flow
    Wertgeim, I. I.
    Zaks, M. A.
    Sagitov, R., V
    Sharifulin, A. N.
    FLUID DYNAMICS, 2022, 57 (04) : 430 - 443
  • [36] Local Bifurcations in the Periodic Boundary Value Problem for the Generalized Kuramoto-Sivashinsky Equation
    Kulikov, A. N.
    Kulikov, D. A.
    AUTOMATION AND REMOTE CONTROL, 2017, 78 (11) : 1955 - 1966
  • [37] Weakly nonlinear analysis of thermoacoustic bifurcations in the Rijke tube
    Orchini, Alessandro
    Rigas, Georgios
    Juniper, Matthew P.
    JOURNAL OF FLUID MECHANICS, 2016, 805 : 523 - 550
  • [38] On Bifurcations in Nonlinear Consensus Network
    Srivastava, Vaibhav
    Moehlis, Jeff
    Bullo, Francesco
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 1647 - 1652
  • [39] On Bifurcations in Nonlinear Consensus Networks
    Srivastava, Vaibhav
    Moehlis, Jeff
    Bullo, Francesco
    JOURNAL OF NONLINEAR SCIENCE, 2011, 21 (06) : 875 - 895
  • [40] Flutter of a Multicomponent Beam in a Supersonic Flow
    Amato, Marco
    Elishakoff, Isaac
    Reddy, J. N.
    AIAA JOURNAL, 2021, 59 (11) : 4342 - 4353