Lower bounds for the volume with upper bounds for the Ricci Curvature in dimension three

被引:0
作者
Gimeno, Vicent [1 ]
机构
[1] Univ Jaume I IMAC, Dept Math, E-12071 Castellon de La Plana, Spain
关键词
53C20 (primary); 53C22 (secondary);
D O I
10.1112/blms.12410
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we provide several lower bounds for the volume of a geodesic ball within the injectivity radius in a 3-dimensional Riemannian manifold assuming only upper bounds for the Ricci curvature.
引用
收藏
页码:194 / 203
页数:10
相关论文
共 11 条
  • [1] Berger M., 1980, Ann. Inst. Fourier (Grenoble), V30, P259
  • [2] Chavel Isaac, 1993, Cambridge Tracts in Mathematics, V108
  • [3] CHEN BY, 1981, J REINE ANGEW MATH, V325, P28
  • [4] CROKE CB, 1980, ANN SCI ECOLE NORM S, V13, P419
  • [5] Gray Alfred, 2003, TUBES, V221
  • [6] A REFINEMENT OF GUNTHER'S CANDLE INEQUALITY
    Kloeckner, Benoit R.
    Kuperberg, Greg
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2015, 19 (01) : 121 - 134
  • [7] Li P, 2012, CAM ST AD M, V134, P1
  • [8] METRICS OF NEGATIVE RICCI CURVATURE
    LOHKAMP, J
    [J]. ANNALS OF MATHEMATICS, 1994, 140 (03) : 655 - 683
  • [9] ONeill B., 1983, Semi-Riemannian geometry with applications to relativity
  • [10] Petersen P, 1998, GRADUATE TEXTS MATH, V171