Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water

被引:121
作者
Leron, Rhoda B.
Li, Meng-Hui [1 ]
机构
[1] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Chungli 32023, Taiwan
关键词
Choline chloride; Deep eutectic solvents; Excess molar heat capacity; Molar heat capacity; Redlich-Kister equation; IONIC LIQUIDS; 1-ETHYL-3-METHYLIMIDAZOLIUM ETHYLSULFATE; THERMOPHYSICAL PROPERTIES; ELECTRODEPOSITION; SOLUBILITY; EXTRACTION;
D O I
10.1016/j.tca.2011.11.036
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, the molar heat capacities, C-P, of three choline chloride-based deep eutectic solvents (DESs); Reline, Ethaline and Glyceline. and their binary mixtures with water were determined. Using a heat flow differential scanning calorimeter, the heat capacities were measured at standard pressure from (303.2 to 353.2) K and over the complete range of composition. Results showed that the molar heat capacity increased with increasing temperature and, for the binary systems, with increasing DES concentration. The temperature-dependence of the pure DESs were successfully represented by a second-order empirical correlation with an AAD% of 0.05. The excess molar heat capacities. C-P(E), of the binary mixtures also determined and found generally negative over the whole composition range while exhibiting negative temperature dependence. The C-P(E) values were fitted to a Redlich-Kister type equation to correlate them to the temperature and DES mole fraction and the molar heat capacities of the binary mixtures were predicted. The applied models successfully correlated the experimental C-p data as functions of both temperature and composition. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 57
页数:6
相关论文
共 49 条
[1]   Extraction of glycerol from biodiesel into a eutectic based ionic liquid [J].
Abbott, Andrew P. ;
Cullis, Paul M. ;
Gibson, Manda J. ;
Harris, Robert C. ;
Raven, Emma .
GREEN CHEMISTRY, 2007, 9 (08) :868-872
[2]   Eutectic-based ionic liquids with metal-containing anions and cations [J].
Abbott, Andrew P. ;
Barron, John C. ;
Ryder, Karl S. ;
Wilson, David .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (22) :6495-6501
[3]   Application of hole theory to define ionic liquids by their transport properties [J].
Abbott, Andrew P. ;
Harris, Robert C. ;
Ryder, Karl S. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (18) :4910-4913
[4]   Application of ionic liquids to the electrodeposition of metals [J].
Abbott, Andrew P. ;
McKenzie, Katy J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (37) :4265-4279
[5]   Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid [J].
Abbott, Andrew P. ;
Capper, Glen ;
McKenzie, Katy J. ;
Ryder, Karl S. .
ELECTROCHIMICA ACTA, 2006, 51 (21) :4420-4425
[6]   Solubility of metal oxides in deep eutectic solvents based on choline chloride [J].
Abbott, Andrew P. ;
Capper, Glen ;
Davies, David L. ;
McKenzie, Katy J. ;
Obi, Stephen U. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2006, 51 (04) :1280-1282
[7]   Glycerol eutectics as sustainable solvent systems [J].
Abbott, Andrew P. ;
Harris, Robert C. ;
Ryder, Karl S. ;
D'Agostino, Carmine ;
Gladden, Lynn F. ;
Mantle, Mick D. .
GREEN CHEMISTRY, 2011, 13 (01) :82-90
[8]   Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids [J].
Abbott, AP ;
Capper, G ;
Davies, DL ;
Rasheed, RK ;
Shikotra, P .
INORGANIC CHEMISTRY, 2005, 44 (19) :6497-6499
[9]   Ionic liquid analogues formed from hydrated metal salts [J].
Abbott, AP ;
Capper, G ;
Davies, DL ;
Rasheed, RK .
CHEMISTRY-A EUROPEAN JOURNAL, 2004, 10 (15) :3769-3774
[10]   Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids [J].
Abbott, AP ;
Boothby, D ;
Capper, G ;
Davies, DL ;
Rasheed, RK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (29) :9142-9147