Phase stability, structures and properties of the (Bi2)m (Bi2Te3)n natural superlattices

被引:34
|
作者
Bos, J. -W. G. [1 ,2 ]
Faucheux, F. [1 ,2 ]
Downie, R. A. [1 ,2 ]
Marcinkova, A. [3 ,4 ]
机构
[1] Heriot Watt Univ, Inst Chem Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Ctr Adv Energy Storage & Recovery, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[4] Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh EH9 3JJ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
(Bi-2)(m)center dot(Bi2Te3)(n) natural superlattices; Bi-Te Phase Diagram; Thermoelectricity; TOPOLOGICAL INSULATOR; SERIES;
D O I
10.1016/j.jssc.2012.03.034
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The phase stability of the (Bi-2)(m) (Bi2Te3)(n) natural superlattices has been investigated through the low temperature solid state synthesis of a number of new binary BixTe1-x compositions. Powder X-ray diffraction revealed that an infinitely adaptive series forms for 0.44 <= x <= 0.70, while an unusual 2-phase region with continuously changing compositions is observed for 0.41 <= x <= 0.43. For x > 0.70, mixtures of elemental Bi and an almost constant composition (Bi-2)(m) (Bi2Te3)(n) phase are observed. Rietveld analysis of synchrotron X-ray powder diffraction data collected on Bi2Te (m=2, n=1) revealed substantial interchange of Bi and Te between Bi-2 and Bi2Te3 blocks, demonstrating that the block compositions are variable. All investigated phase pure compositions are degenerate semiconductors with low residual resistivity ratios and moderate positive magnetoresistances (R/R-0 = 1.05 in 9 T). The maximum Seebeck coefficient is +80 mu V K-1 for x=0.63, leading to an estimated thermoelectric figure of merit, zT=0.2 at 250 K. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [21] Physicochemical analysis of Bi2Te3 - (Fe, Eu) - Bi2Te3 junctions grown by molecular beam epitaxy method
    Balin, K.
    Rapacz, R.
    Weis, M.
    Szade, J.
    AIP ADVANCES, 2017, 7 (05):
  • [22] Pressure induced electronic phase transitions and superconductivity in n-type Bi2Te3
    Zhang, Junliang
    Zhang, Sijia
    Kong, Panpan
    Yang, Liuxiang
    Jin, Changqing
    Liu, Qingqing
    Wang, Xiancheng
    Yu, Jiancheng
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (12)
  • [23] Effect of Sr Doping on Structural and Transport Properties of Bi2Te3
    Selivanov, Yurii G.
    Martovitskii, Victor P.
    Bannikov, Mikhail I.
    Kuntsevich, Aleksandr Y.
    MATERIALS, 2021, 14 (24)
  • [24] Magnetotransport and thermal properties of microwave synthesized nanostructured Bi2Te3
    Bera, Sumit
    Behera, Prakash
    Venkatesh, R.
    Ganesan, V.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (19)
  • [25] Structural and vibrational properties of PVT grown Bi2Te3 microcrystals
    Atuchin, V. V.
    Gavrilova, T. A.
    Kokh, K. A.
    Kuratieva, N. V.
    Pervukhina, N. V.
    Surovtsev, N. V.
    SOLID STATE COMMUNICATIONS, 2012, 152 (13) : 1119 - 1122
  • [26] Preparation of Exfoliated Bi2Te3 Thin Films
    Luo, Jiajun
    Late, Dattatray
    Wu, Isaac
    Biswas, Kanishka
    Kanatzidis, Mercouri
    Grayson, Matthew
    15TH INTERNATIONAL CONFERENCE ON NARROW GAP SYSTEMS (NGS15), 2011, 1416 : 135 - 138
  • [27] Substrate influence on Bi2Te3 growth by MBE
    Concepcion, O.
    de Melo, O.
    Escobosa, A.
    2019 LATIN AMERICAN ELECTRON DEVICES CONFERENCE (LAEDC), 2019, : 47 - 49
  • [28] On atomic mechanisms governing the oxidation of Bi2Te3
    Music, Denis
    Chang, Keke
    Schmidt, Paul
    Braun, Felix N.
    Heller, Martin
    Hermsen, Steffen
    Poellmann, Peter J.
    Schulzendorff, Till
    Wagner, Cedric
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (48)
  • [29] Inhomogeneous State of the Bi2Te3 Doped with Manganese
    Sakhin, V.
    Kukovitskii, E.
    Garif'yanov, N.
    Talanov, Yu.
    Teitel'baum, G.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2017, 30 (01) : 63 - 67
  • [30] Inhomogeneous State of the Bi2Te3 Doped with Manganese
    V. Sakhin
    E. Kukovitskii
    N. Garif’yanov
    Yu. Talanov
    G. Teitel’baum
    Journal of Superconductivity and Novel Magnetism, 2017, 30 : 63 - 67