ON COHEN-MACAULAY MODULES ON SURFACE SINGULARITIES

被引:15
作者
Drozd, Yuriy A. [1 ,2 ]
Greuel, Gert-Martin [3 ]
Kashuba, Irina [3 ]
机构
[1] Max Planck Inst Math, Leipzig, Germany
[2] Kyiv Taras Shevchenko Univ, Kiev, Ukraine
[3] Univ Kaiserslautern, D-67663 Kaiserslautern, Germany
关键词
Cohen-Macaulay modules; Cohen-Macaulay tame and wild rings; normal surface singularities; minimally elliptic singularities; cusp singularities; log-canonical singularities; hypersurface singularities; Auslander-Reiten quiver;
D O I
10.17323/1609-4514-2003-3-2-397-418
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Cohen-Macaulay modules over normal surface singularities. Using the method of Kahn and extending it to families of modules, we classify Cohen-Macaulay modules over cusp singularities and prove that a minimally elliptic singularity is Cohen-Macaulay tame if and only if it is either simple elliptic or cusp. As a corollary, we obtain a classification of Cohen-Macaulay modules over log-canonical surface singularities and hypersurface singularities of type T-pqr; especially they are Cohen-Macaulay tame. We also calculate the Auslander-Reiten quiver of the category of Cohen-Macaulay modules in the considered cases.
引用
收藏
页码:397 / 418
页数:22
相关论文
共 27 条
[1]  
Arnold V. I., 2012, CLASSIFICATION CRITI, V1
[2]  
ARTIN M, 1969, I HAUTES ETUDES SCI, P23
[3]   PURITY OF BRANCH LOCUS [J].
AUSLANDER, M .
AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (01) :116-&
[4]   ON RAMIFICATION THEORY IN NOETHERIAN RINGS [J].
AUSLANDER, M ;
BUCHSBAUM, DA .
AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (03) :749-765
[5]   MCKAY QUIVERS AND EXTENDED DYNKIN DIAGRAMS [J].
AUSLANDER, M ;
REITEN, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 293 (01) :293-301
[6]   ALMOST SPLIT-SEQUENCES IN DIMENSION-2 [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1987, 66 (01) :88-118
[7]  
Cartan H., 1999, Homological algebra. Princeton Landmarks in Mathematics
[8]  
Drozd Y., 1994, FINITE DIMENSIONAL A
[9]  
Drozd Y. A., 1967, IZV AKAD NAUK SSSR M, V31, P783
[10]  
DROZD YA, 1993, COMPOS MATH, V89, P315