Anisotropy of small-scale scalar turbulence

被引:17
作者
Kurien, S [1 ]
Aivalis, KG
Sreenivasan, KR
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Mech Engn, New Haven, CT 06520 USA
关键词
D O I
10.1017/S0022112001006176
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The anisotropy of small-scale temperature fluctuations in shear flows is analysed by making measurements in high-Reynolds-number atmospheric surface layers. A spherical harmonics representation of the moments of scalar increments is proposed, such that the isotropic part corresponds to the index j = 0 and increasing degrees of anisotropy correspond to increasing j. The parity and angular dependence of the odd moments of the scalar increments show that the moments cannot contain any isotropic part (j = 0), but can be satisfactorily represented by the lowest-order anisotropic term corresponding to j = 1. Thus, the skewnesses of scalar increments (and derivatives) are inherently anisotropic quantities, and are not suitable indicators of the tendency towards isotropy.
引用
收藏
页码:279 / 288
页数:10
相关论文
共 21 条
[1]   Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group [J].
Arad, I ;
L'vov, VS ;
Procaccia, I .
PHYSICAL REVIEW E, 1999, 59 (06) :6753-6765
[2]   Extraction of anisotropic contributions in turbulent flows [J].
Arad, I ;
Dhruva, B ;
Kurien, S ;
L'vov, VS ;
Procaccia, I ;
Sreenivasan, KR .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5330-5333
[3]   Disentangling scaling properties in anisotropic and inhomogeneous turbulence [J].
Arad, I ;
Biferale, L ;
Mazzitelli, I ;
Procaccia, I .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :5040-5043
[4]   Isotropy vs anisotropy in small-scale turbulence [J].
Biferale, L ;
Vergassola, M .
PHYSICS OF FLUIDS, 2001, 13 (08) :2139-2141
[5]   Universality and saturation of intermittency in passive scalar turbulence [J].
Celani, A ;
Lanotte, A ;
Mazzino, A ;
Vergassola, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2385-2388
[6]   Scaling exponents in weakly anisotropic turbulence from the Navier-Stokes equation [J].
Grossmann, S ;
von der Heydt, A ;
Lohse, D .
JOURNAL OF FLUID MECHANICS, 2001, 440 :381-390
[7]   Anisotropic scaling contributions to high-order structure functions in high-Reynolds-number turbulence [J].
Kurien, S ;
Sreenivasan, KR .
PHYSICAL REVIEW E, 2000, 62 (02) :2206-2212
[8]   Scaling structure of the velocity statistics in atmospheric boundary layers [J].
Kurien, S ;
L'vov, VS ;
Procaccia, I ;
Sreenivasan, KR .
PHYSICAL REVIEW E, 2000, 61 (01) :407-421
[9]  
KURIEN S, 2001, LES HOUCH SUMM SCH P, P1
[10]   JOINT MULTIFRACTAL MEASURES - THEORY AND APPLICATIONS TO TURBULENCE [J].
MENEVEAU, C ;
SREENIVASAN, KR ;
KAILASNATH, P ;
FAN, MS .
PHYSICAL REVIEW A, 1990, 41 (02) :894-913