L r convergence for B-valued random elements

被引:8
作者
Chen, Ping Yan [1 ]
Wang, Ding Cheng [2 ]
机构
[1] Jinan Univ, Dept Math, Guangzhou 510630, Guangdong, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
L-r convergence; random element; Rademacher type p; Marcinkiewicz-Zygmund strong law of large number; P BANACH-SPACES; WEIGHTED SUMS; LARGE NUMBERS; UNIFORM INTEGRABILITY; WEAK LAW; THEOREMS;
D O I
10.1007/s10114-011-9475-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper investigates L (p) convergence and Marcinkiewicz-Zygmund strong laws of large numbers for random elements in a Banach space under the condition that the Banach space is of Rademacher type p, 1 < p < 2. The paper also discusses L (r) convergence and L (r) bound for random elements without any geometric restriction condition on the Banach space.
引用
收藏
页码:857 / 868
页数:12
相关论文
共 20 条
[1]   A mean convergence theorem and weak law for arrays of random elements in martingale type p Banach spaces [J].
Adler, A ;
Rosalsky, A ;
Volodin, AI .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (02) :167-174
[2]  
[Anonymous], 1971, INDEPENDENT STATIONA
[3]  
Azlarov T. A., 1981, THEORY PROBAB ITS AP, V26, P537
[4]   Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability [J].
Cabrera, MO ;
Volodin, AI .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (02) :644-658
[5]  
CHANDRA TK, 1989, SANKHYA SER A, V51, P309
[6]  
Chen P. Y., 1998, WUHAN U J NATURAL SC, V44, P11
[7]  
Chen P. Y., 1999, NE MATH J, V15, P195
[8]  
[陈平炎 Chen Pingyan], 2005, [数学物理学报. A辑, Acta Mathematica Scientia], V25, P386
[9]  
Chow Y. S., 1988, B I MATH ACAD SINICA, V16, P177
[10]  
DEACOSTA A, 1981, ANN PROBAB, V9, P157