Some remarks on "On the windowed Fourier transform and wavelet transform of almost periodic functions," by JR. Partington and B. Unalmi

被引:10
作者
Galindo, F [1 ]
机构
[1] Univ Valladolid, Dept Anal Matemat, Valladolid 47005, Spain
关键词
almost periodic function; windowed Fourier transform; wavelet transform; parseval identity; frames;
D O I
10.1016/j.acha.2004.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
J.R. Partington and B. Unalmis consider in their 2001 paper [J.R. Partington, B. Unaltmis, Appl. Comput. Harmon. Anal. 10 (1) (2001) 45-60] the windowed Fourier transform and wavelet transform as tools for analyzing almost periodic signals. They establish Parseval-type identities and consider discretized versions of these transforms in order to construct generalized frame decornpositions. We have found a gap in the construction of generalized frames in the windowed Fourier transform case; we comment on this gap and give an alternative proof. As for the wavelet transform case, in [J.R. Partington, B. Unalmis, Appl. Comput. Harmon. Anal. 10 (1) (2001) 45-60] the generalized frame decomposition is done only for the simplest wavelet, the Haar wavelet; we show how to construct generalized frame decompositions for a wide family of wavelets. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:174 / 181
页数:8
相关论文
共 17 条
[1]  
Amerio L., 1971, ALMOST PERIODIC FUNC
[2]  
[Anonymous], 1993, Ten Lectures of Wavelets
[3]  
[Anonymous], 1999, WAVELET TOUR SIGNAL
[4]  
BESICOVITC AS, 1954, ALMOST PERIODIC FUNC
[5]  
Bohr H, 1947, ALMOST PERIODIC FUNC
[6]  
Corduneanu C., 1989, ALMOST PERIODIC FUNC
[7]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[8]  
Feichtinger H. G., 1998, GABOR ANAL ALGORITHM
[9]  
Hernandez E., 1996, 1 COURSE WAVELETS
[10]  
HEWITT E, 1963, ABSTRACT HARMONIC AN, V1