Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses

被引:325
作者
Saibo, Nelson J. M. [1 ]
Lourenco, Tiago [1 ]
Oliveira, Maria Margarida [1 ]
机构
[1] Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-2780157 Oeiras, Portugal
关键词
Transcription factors; photosynthesis; stomata; abiotic stress; abiotic stress signalling; cold; drought; salt; ABA; MYB; AP2; EREBP; RESPONSIVE GENE-EXPRESSION; COMPARATIVE PROTEOMIC ANALYSIS; LOW-TEMPERATURE STRESS; ZINC-FINGER PROTEINS; WATER-USE EFFICIENCY; FREEZING TOLERANCE; ABSCISIC-ACID; COLD-ACCLIMATION; SIGNAL-TRANSDUCTION; FUNCTIONAL-ANALYSIS;
D O I
10.1093/aob/mcn227
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Environmental conditions, such as water supply, temperature and salinity, strongly affect plant growth and development. Extremes of these conditions (abiotic stresses) adversely affect many different mechanisms associated with plant responses and adaptation to stress: photosynthetic mechanisms, e.g. stomatal control of CO2 diffusion, photosystem II repair, ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity and scavenging of reactive oxygen species (ROS), are susceptible to damage, and photosynthetic efficiency can be greatly decreased. Responses and adaptations require differential gene expression, which is regulated by specific transcription factors (TFs). The role and regulation of several TFs involved in abiotic stress response pathways are considered, with emphasis on new findings regarding expression of genes related to both stomatal and non-stomatal limitations to CO2 photosynthetic assimilation. Many TFs, belonging to different families (e.g. MYB, bZIP and DREB), have been related to abiotic stress responses; however, only a few are known to regulate the expression of photosynthesis-related genes in response to stress. Several TFs belonging to the MYB family play an important role in both stomatal and non-stomatal responses by regulation of stomatal numbers and sizes, and metabolic components, respectively. To obtain more insight into this area of potentially large agronomic impact, it is essential to identify and functionally characterize new TFs that mediate the stress responses regulating the expression of genes associated with photosynthesis and related metabolism.
引用
收藏
页码:609 / 623
页数:15
相关论文
共 138 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance [J].
Agarwal, Manu ;
Hao, Yujin ;
Kapoor, Avnish ;
Dong, Chun-Hai ;
Fujii, Hiroaki ;
Zheng, Xianwu ;
Zhu, Jian-Kang .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (49) :37636-37645
[3]   The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis [J].
Aharoni, A ;
Dixit, S ;
Jetter, R ;
Thoenes, E ;
van Arkel, G ;
Pereira, A .
PLANT CELL, 2004, 16 (09) :2463-2480
[4]   Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis [J].
Allakhverdiev, SI ;
Nishiyama, Y ;
Miyairi, S ;
Yamamoto, H ;
Inagaki, N ;
Kanesaki, Y ;
Murata, N .
PLANT PHYSIOLOGY, 2002, 130 (03) :1443-1453
[5]   A central integrator of transcription networks in plant stress and energy signalling [J].
Baena-Gonzalez, Elena ;
Rolland, Filip ;
Thevelein, Johan M. ;
Sheen, Jen .
NATURE, 2007, 448 (7156) :938-U10
[6]   PTK, the chloroplast RNA polymerase-associated protein kinase from mustard (Sinapis alba), mediates redox control of plastid in vitro transcription [J].
Baginsky, S ;
Tiller, K ;
Pfannschmidt, T ;
Link, G .
PLANT MOLECULAR BIOLOGY, 1999, 39 (05) :1013-1023
[7]   Curcurnin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element [J].
Balogun, E ;
Hoque, M ;
Gong, PF ;
Killeen, E ;
Green, CJ ;
Foresti, R ;
Alam, J ;
Motterlini, R .
BIOCHEMICAL JOURNAL, 2003, 371 :887-895
[8]   Making holes in leaves: Promoting cell state transitions in stomatal development [J].
Barton, M. Kathryn .
PLANT CELL, 2007, 19 (04) :1140-1143
[9]   SUPEROXIDE-DISMUTASE AND STRESS TOLERANCE [J].
BOWLER, C ;
VANMONTAGU, M ;
INZE, D .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1992, 43 :83-116
[10]   Plants use calcium to resolve salt stress [J].
Bressan, RA ;
Hasegawa, PM ;
Pardo, JM .
TRENDS IN PLANT SCIENCE, 1998, 3 (11) :411-412