Vertex algebraic intertwining operators among generalized Verma modules for affine Lie algebras

被引:2
作者
McRae, Robert [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
Affine Lie algebras; Vertex operator algebras; Intertwining operators; VERLINDE FORMULAS; REPRESENTATIONS;
D O I
10.1016/j.aim.2020.107351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find sufficient conditions for the construction of vertex algebraic intertwining operators, among generalized Verma modules for an affine Lie algebra (g) over cap, from g-module homomorphisms. When g = sl(2), these results extend previous joint work with J. Yang, but the method used here is different. Here, we construct intertwining operators by solving Knizhnik-Zamolodchikov equations for three-point correlation functions associated to (g) over cap, and we identify obstructions to the construction arising from the possible non-existence of series solutions having a prescribed form. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 21 条
[1]   On fusion rules and intertwining operators for the Weyl vertex algebra [J].
Adamovic, Drazen ;
Pedic, Veronika .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)
[2]  
Adamovic D, 2019, COMMUN MATH PHYS, V366, P1025, DOI 10.1007/s00220-019-03328-4
[3]  
Adamovic D, 1995, MATH RES LETT, V2, P563
[4]   FOCK REPRESENTATIONS AND BRST COHOMOLOGY IN SL(2) CURRENT-ALGEBRA [J].
BERNARD, D ;
FELDER, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (01) :145-168
[5]  
Chen J, 2007, PROC IEEE 12 INT C W, V33, P230, DOI DOI 10.1007/s11270-007-9372-6
[6]   Modular data and Verlinde formulae for fractional level WZW models II [J].
Creutzig, Thomas ;
Ridout, David .
NUCLEAR PHYSICS B, 2013, 875 (02) :423-458
[7]   Modular data and Verlinde formulae for fractional level WZW models I [J].
Creutzig, Thomas ;
Ridout, David .
NUCLEAR PHYSICS B, 2012, 865 (01) :83-114
[8]  
Dong CY, 1997, COMMUN MATH PHYS, V184, P65, DOI 10.1007/s002200050053
[9]   VERTEX OPERATOR-ALGEBRAS ASSOCIATED TO REPRESENTATIONS OF AFFINE AND VIRASORO ALGEBRAS [J].
FRENKEL, IB ;
ZHU, YC .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (01) :123-168
[10]  
FRENKEL IB, 1993, MEM AM MATH SOC, V104, pR6