The Combinatorics of Barrier Synchronization

被引:3
作者
Bodini, Olivier [1 ]
Dien, Matthieu [2 ]
Genitrini, Antoine [3 ]
Peschanski, Frederic [3 ]
机构
[1] Univ Paris 13, LIPN, CNRS, UMR 7030, Villetaneuse, France
[2] Univ Caen, GREYC, CNRS, UMR 6072, Caen, France
[3] Sorbonne Univ, LIP6, CNRS, UMR 7607, Paris, France
来源
APPLICATION AND THEORY OF PETRI NETS AND CONCURRENCY, PETRI NETS 2019 | 2019年 / 11522卷
关键词
Barrier synchronization; Combinatorics; Uniform random generation; GENERATION;
D O I
10.1007/978-3-030-21571-2_21
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we study the notion of synchronization from the point of view of combinatorics. As a first step, we address the quantitative problem of counting the number of executions of simple processes interacting with synchronization barriers. We elaborate a systematic decomposition of processes that produces a symbolic integral formula to solve the problem. Based on this procedure, we develop a generic algorithm to generate process executions uniformly at random. For some interesting sub-classes of processes we propose very efficient counting and random sampling algorithms. All these algorithms have one important characteristic in common: they work on the control graph of processes and thus do not require the explicit construction of the state-space.
引用
收藏
页码:386 / 405
页数:20
相关论文
共 19 条
[1]   Uniform Generation in Trace Monoids [J].
Abbes, Samy ;
Mairesse, Jean .
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT I, 2015, 9234 :63-75
[2]  
Banderier C., 2018, GASCOM 2018
[3]  
Basset N., 2017, LIPICS, V85
[4]  
Bodini O, 2016, ELECTRON J COMB, V23
[5]  
Bodini O., 2018, LIPICS, V110
[6]  
BODINI O, 2013, IARCS ANN C FSTTCS, V24, P425
[7]   Entropic Uniform Sampling of Linear Extensions in Series-Parallel Posets [J].
Bodini, Olivier ;
Dien, Matthieu ;
Genitrini, Antoine ;
Peschanski, Frederic .
COMPUTER SCIENCE - THEORY AND APPLICATIONS (CSR 2017), 2017, 10304 :71-84
[8]  
Brightwell G., 1991, ser. STOC '91, P175, DOI 10.1145/103418.103441
[9]  
Dittmer S., 2018, ARXIV180206312
[10]   A CALCULUS FOR THE RANDOM GENERATION OF LABELED COMBINATORIAL STRUCTURES [J].
FLAJOLET, P ;
ZIMMERMAN, P ;
VANCUTSEM, B .
THEORETICAL COMPUTER SCIENCE, 1994, 132 (1-2) :1-35