Nanoconfined light metal hydrides for reversible hydrogen storage

被引:109
作者
de Jongh, Petra E. [1 ]
Allendorf, Mark [2 ]
Vajo, John J. [3 ]
Zlotea, Claudia [4 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, NL-3508 TC Utrecht, Netherlands
[2] Sandia Natl Labs, Livermore, CA 94550 USA
[3] HRL Labs LLC, Malibu, CA USA
[4] Inst Chim & Mat Paris, Paris, France
关键词
NANOPARTICLES; SIZE; KINETICS; RELEASE; LIBH4; NANOMATERIALS; CAPACITY;
D O I
10.1557/mrs.2013.108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nano-sizing and scaffolding have emerged in the past decade as important strategies to control the kinetics, reversibility, and equilibrium pressure for hydrogen storage in light metal hydride systems. Reducing the size of metal hydrides to the nanometer range allows fast kinetics for both hydrogen release and subsequent uptake. Reversibility of the hydrogen release is impressively facilitated by nanoconfining the materials in a carbon or metal-organic framework scaffold, in particular for reactions involving multiple solid phases, such as the decomposition of LiBH4, NaBH4, and NaAlH4. More complex is the impact of nanoconfinement on phase equilibria. It is clear that equilibrium pressures, and even decomposition pathways, are changed. However, further experimental and computational studies are essential to understand the exact origins of these effects and to unravel the role of particle size, physical confinement, and interfaces. Nevertheless, it has become clear that nanoconfinement is a strong tool to change physicochemical properties of metal hydrides, which might not only be of relevance for hydrogen storage, but also for other applications such as rechargeable batteries.
引用
收藏
页码:488 / 494
页数:7
相关论文
共 58 条
[11]   Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons [J].
Cahen, S. ;
Eymery, J. -B. ;
Janot, R. ;
Tarascon, J. -M. .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :902-908
[12]   ReaxFFMgH reactive force field for magnesium hydride systems [J].
Cheung, S ;
Deng, WQ ;
van Duin, ACT ;
Goddard, WA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (05) :851-859
[13]   Core-Shell Strategy Leading to High Reversible Hydrogen Storage Capacity for NaBH4 [J].
Christian, Meganne L. ;
Aguey-Zinsou, Kondo-Francois .
ACS NANO, 2012, 6 (09) :7739-7751
[14]   Nanosizing and Nanoconfinement: New Strategies Towards Meeting Hydrogen Storage Goals [J].
de Jongh, Petra E. ;
Adelhelm, Philipp .
CHEMSUSCHEM, 2010, 3 (12) :1332-1348
[15]   The preparation of carbon-supported magnesium nanoparticles using melt infiltration [J].
de Jongh, Petra E. ;
Wagemans, Rudy W. P. ;
Eggenhuisen, Tamara M. ;
Dauvillier, Bibi S. ;
Radstake, Paul B. ;
Meeldijk, Johannes. D. ;
Geus, John W. ;
de Jong, Krijn P. .
CHEMISTRY OF MATERIALS, 2007, 19 (24) :6052-6057
[16]   Hybrid porous solids:: past, present, future [J].
Ferey, Gerard .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (01) :191-214
[17]   Nanoconfinement effects in energy storage materials [J].
Fichtner, Maximilian .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (48) :21186-21195
[18]   Enhanced reversibility of H2 sorption in nanoconfined complex metal hydrides by alkali metal addition [J].
Gao, Jinbao ;
Ngene, Peter ;
Lindemann, Inge ;
Gutfleisch, Oliver ;
de Jong, Krijn P. ;
de Jongh, Petra E. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (26) :13209-13215
[19]   Confinement of NaAIH4 in Nanoporous Carbon: Impact on H2 Release, Reversibility, and Thermodynamics [J].
Gao, Jinbao ;
Adelhelm, Philipp ;
Verkuijlen, Margriet H. W. ;
Rongeat, Carine ;
Herrich, Monika ;
van Bentum, P. Jan M. ;
Gutfleisch, Oliver ;
Kentgens, Arno P. M. ;
de Jong, Krijn P. ;
de Jongh, Petra E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (10) :4675-4682
[20]   Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds [J].
Gross, Adam F. ;
Vajo, John J. ;
Van Atta, Sky L. ;
Olson, Gregory L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (14) :5651-5657