CLUSTER CHARACTERS FOR 2-CALABI-YAU TRIANGULATED CATEGORIES

被引:120
作者
Palu, Yann [1 ]
机构
[1] Univ Paris 07, CNRS, UMR 7586, F-75251 Paris 05, France
关键词
Calabi-Yau triangulated category; cluster algebra; cluster category; cluster-tilting object;
D O I
10.5802/aif.2412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from an arbitrary cluster-tilting object T in a 2-Calabi-Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object L, a fraction X(T, L) using a formula proposed by Caldero and Keller. We show that the map taking L to X(T,L) is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster category and the cluster variables, which confirms a conjecture of Caldero, and Keller.
引用
收藏
页码:2221 / 2248
页数:28
相关论文
共 27 条
[1]   Cluster algebras III: Upper bounds and double Bruhat cells [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :1-52
[2]  
BUAN AB, ARXIVMATHRT0701557
[3]  
BUAN AB, ARIXMATHRT0412077
[4]  
BUAN AB, ARXIVMATHRT0510359
[5]  
Buan AB, 2007, T AM MATH SOC, V359, P323
[6]   Tilting theory and cluster combinatorics [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose ;
Reineke, Markus ;
Reiten, Idun ;
Todorov, Gordana .
ADVANCES IN MATHEMATICS, 2006, 204 (02) :572-618
[7]   Quivers with relations arising from clusters (An case) [J].
Caldero, P ;
Chapoton, F ;
Schiffler, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :1347-1364
[8]  
CALDERO P, ARXIVMATHRT0506018
[9]  
CALDERO P, MATHRT0510251
[10]   Cluster algebras as Hall algebras of quiver representations [J].
Caldero, Philippe ;
Chapoton, Frederic .
COMMENTARII MATHEMATICI HELVETICI, 2006, 81 (03) :595-616